Skip to main content
Log in

Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman–Monteith and Penman), temperature-based approach (Hargreaves–Samani), and radiation-based approach (Priestley–Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman–Monteith, Turc, and Priestley–Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10
Fig 11

Similar content being viewed by others

Abbreviations

ASW:

Available soil water (mm)

TDR:

Time domain reflectometry

ET:

Evapotranspiration (mm)

ETc :

Crop evapotranspiration (mm)

ETo :

Reference evapotranspiration (mm)

I:

Net irrigation depth (mm)

Kc :

Crop coefficient

TAW:

Total available soil water (mm)

θFC :

Volumetric soil moisture at field capacity (m3 m−3)

θWP :

Volumetric soil moisture at wilting point (m3 m−3)

θv :

Volumetric soil water content (m3 m−3)

ρg :

Bulk soil density

θg :

Soil water content by the gravimetric method (m3 m−3)

Ww :

Weight of wet (g)

Wd :

Dry soil (g)

v:

Velocity (m/s)

Ka :

Soil’s bulk dielectric constant

c:

Speed of light (m/s)

Eq :

Equation

A:

Sum of irrigation and rain (mm)

ΔW:

Variation of soil water (mm)

λ:

Latent heat of vaporization (2.501 MJ kg−1)

R n :

Net radiation (W m−2)

G:

Soil heat flux (W m−2)

γ:

Psychrometric constant (kPa °C−1)

ΔT:

Temperature (°C)

Δea :

Actualsaturation vapor pressure (kPa)

U2 :

Wind speed (ms−1) at 2 m height,

Δ:

Slope of the vapor pressure curve (kPa0C−1)

es :

Saturation vapor pressure (kPa)

GM :

Gravimetric method

References

  • Abtew W (1996) Evapotranspiration measurements and method for three wetland systems in South Florida. J Am Water Resour Assoc 32(3):465–473

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration guidelines for computing crop water requirements. Irrigation and drainage paper no. 56, FAO, Rome 300.

  • Azhar Aftab H, Perera BJC (2011) Evaluation of reference evapotranspiration estimation methods under southeast Australian conditions. J Irrig Drain Eng 137(5):268–279 ISSN 0733-9437/2011/5

    Article  Google Scholar 

  • Bittelli M, Salvatorelli F, Rossi Pisa P (2008) Correction of TDR-based soil water content measurements in conductive soils. Geoderma 14:133–142

    Article  Google Scholar 

  • Coppola A, Dragonetti G, Comegna A, Lamaddalena N, Caushi B, Haikal MA, Basile A (2013) Measuring and modeling water content in stony soils. Soil Tillage Res 128:9–22. doi:10.1016/j.still2012.10.006 Accessed 20 Jan 2016

    Article  Google Scholar 

  • Dalton FN, Van Genuchten M (1986) The time-domain reflectometry measuring soil water content and salinity. Geoderma 38:237–250

    Article  Google Scholar 

  • Djaman K, Irmak S (2013) Actual crop evapotranspiration and alfalfa- and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions. J Irrig Drain Eng 139:433–446

    Article  Google Scholar 

  • Djaman K, Balde Alpha B, Sow A, Muller B, Irmak S, N’Diaye Mamadou K, Baboucarr M, Moukoumbi Yonnelle D, Futakuchic K, Saito K (2015) Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River valley. J Hydrol Reg Stud 3:139–159

    Article  Google Scholar 

  • Dobriyal P, Qureshi A, Badola R, Hussain SA (2012) A review of the methods available for estimating soil moisture and its implications for water resource management. J Hydrol 458–459. doi:10.1016/j.jhydrol.2012.06.021. Accessed 12 Jan 2016

  • Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop-water requirements FAO Irrigation and Drainage Paper No. 24, second rev. ed. FAO, Rome: 56

  • Hargreaves GL, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • Hillel D (2004) Introduction to environmental soil physics. Elsevier Academic press, London ISBN: 0-12-348655-6

    Google Scholar 

  • Imko GmbH (2000) Soil and material moisture brochure. www.imko.de/download Accessed 12 January 2016

  • Jensen ME (1974) Consumptive use of water and irrigation water requirements. Irrig Drain Div Am Soc Civil Eng, New York.

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE manual and reports on engineering practice no. 70. ASCE, New York

    Google Scholar 

  • Jhajharia D, Deb Barma S, Agrawal G (2004) Comparison of pan evaporation-based reference evapotranspiration model with Penman Monteith FAO-56 model. J Agric Eng 41(3):46–52

    Google Scholar 

  • Jhajharia D, Dhiman SD (2006) Comparison of pan evaporation and ET estimates under humid climatic conditions of Agartala (Tripura) and Umiam Meghalaya). J Soil Water Conserv India 5(4):32–37

    Google Scholar 

  • Jones SB, Wraith JM, Dani O (2002) Time domain reflectometry measurement principles and applications. Hydrol Process 16:141–153. doi:10.1002/hyp.513

    Article  Google Scholar 

  • Kashyap PS, Panda RK (2001) Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agric Water Manag 50(1):9–25

    Article  Google Scholar 

  • Kisi O (2014) Comparison of different empirical methods for estimating daily reference evapotranspiration in Mediterranean climate. J Irrig Drain Eng 140(1):04013002. doi:10.1061/(ASCE)IR.1943-4774.0000664

  • Kumar R, Zeenat F, Sakiba N, Jhajharia D (2015) Ecohydrological modeling of irrigation scheduling of maize using time series analysis in the temperate region of Kashmir valley, India. Water Sci Technol Water Supply 15(4):727

    Article  Google Scholar 

  • Lu J, Sun G, McNulty SG, Amatya, DMA (2005) Comparison of six potential evapotranspiration methods for regional use in the southeastern united states, Paper No. 03175 of the Journal of the American Water Resources Association (JAWRA)

  • Malek E (1993) Comparison of the Bowen ratio-energy balance and stability-corrected aerodynamic methods for measurement of evapotranspiration. Theor Appl Climatol 48:167–178

    Article  Google Scholar 

  • Malek E, Bingham GE (1993) Comparison of the Bowen ratio-energy balance and the water balance methods for the measurement of evapotranspiration. J Hydrol 146:209–220

    Article  Google Scholar 

  • Mastrorilli M, Katerji N, Rana G, Bechir BN (1998) Daily actual evapotranspiration measured with TRD technique in Mediterranean conditions. Agric For Meteorol 90(1):81–89

    Article  Google Scholar 

  • Noborio K (2001) Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Comput Electron Agric 31:213–237

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc London 193:120–145

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evapotranspiration using large scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Rajkai K, Rydn BE (1992) Measuring areal soil moisture distribution with the TDR method. Geoderma 52:73–85

    Article  Google Scholar 

  • Rana G, Katerji N (2002) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13:125–153

    Article  Google Scholar 

  • Schelde K, Ringgaard R, Herbst M, Thomsen A, Friborg T, Søgaard H (2011) Comparing evapotranspiration rates estimated from atmospheric flux and TDR soil moisture measurements. Vadose Zone J 10:78–83. doi:10.2136/vzj2010.0060

    Article  Google Scholar 

  • Skierucha W, Wilczek A, Alokhina O (2008) Calibration of a TDR probe for low soil water content measurements. Sensors Actuators A 147:544–552

    Article  Google Scholar 

  • Tabari H, Grismer ME, Trajkovic S (2013) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci 31:107–117

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1982) Electromagnetic determination of soil water content using TDR: I. Applications to wetting fronts and steep gradients. Soil Sci Soc Am J 46:627–678

    Google Scholar 

  • Trajkovic S, Kolakovic S (2009) Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manag 23:3057–3067

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16:574–582

    Article  Google Scholar 

  • Turc L (1961) Evaluation des besoins en eau irrigation, l’evapotranspiration potentielle. Ann Agron 12:13–49

    Google Scholar 

  • Valipour M (2015) Comparative evaluation of radiation-based methods for estimation of potential evapotranspiration. J Hydrol Eng 20(5):04014068. doi:10.1061/(ASCE)HE.1943-5584.0001066

  • Weitz AM, Grauel WT, Keller M, Veldkamp E (1997) Calibration of time domain reflectometry technique using undisturbed soil samples from humid tropical soils of volcanic origin. Water Resour Res 33:1241–1249. doi:10.1029/96WR03956 ISSN: 0043-1397

    Article  Google Scholar 

  • Walker JP, Willgoose GR, Kalma JD (2004) In situ measurement of soil moisture: a comparison of techniques. J Hydrol 293:85–99

    Article  Google Scholar 

  • Xu CY, Singh VP, Chen YD, Chen D (2008) Evaporation and evapotranspiration. Hydrology and hydraulics, 1st Ed., V. P. Singh, ed., Water Resources Publications: 229–276

  • Zhao W, Zhang Z, Liu B (2010) Water requirements of maize in the middle Heihe River basin China. Agric Water Manag 97:215–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.K., Panda, R.K. & Halder, D. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region. Theor Appl Climatol 129, 1211–1225 (2017). https://doi.org/10.1007/s00704-016-1841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1841-7

Keywords

Navigation