Skip to main content

Advertisement

Log in

Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The study compares two formulas for calculating the daily evapotranspiration ET0 for a reference crop. The first formula was proposed by Allen et al. (AL), while the second one was proposed by Katerji and Perrier with the addition of the carbon dioxide (CO2) effect on evapotranspiration (KP). The study analyses the impact of the calculation by the two formulas on the irrigation requirement (IR). Both formulas are based on the Penman-Monteith equation but adopt different approaches for parameterising the canopy resistance r c . In the AL formula, r c is assumed constant and not sensitive to climate change, whereas in the KP formula, r c is first parameterised as a function of climatic variables, then ET0 is corrected for the air CO2 concentration. The two formulas were compared in two periods. The first period involves data from two sites in the Mediterranean region within a measured climate change period (1981–2006) when all the input climatic variables were measured. The second period (2070–2100) involves data from a future climate change period at one site when the input climatic variables were forecasted for two future climate scenarios (A2 and B2). The annual cumulated values of ET0 calculated by the AL formula are systematically lower than those determined by the KP formula. The differences between the ET0 estimation with the AL and KP formulas have a strong impact on the determination of the IR for the reference crop. In fact, for the two periods, the annual values of IR when ET0 is calculated by the AL formula are systematically lower than those calculated by the KP formula. For the actual measured climate change period, this reduction varied from 26 to 28 %, while for the future climate change period, it varied based on the scenario from 16 % (A2) to 20 % (B2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis canopy. New Phytol 165:351–371

    Article  Google Scholar 

  • Allen RG, Jensen ME, Wright JL, Burman RD (1989) Operational estimate of reference evapotranspiration. Agron J 81(4):650–662

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) FAO irrigation and drainage paper no. 56. In: Crop evapotranspiration. Guidelines for computing crop water requirements. FAO, Rome, p. 300

    Google Scholar 

  • Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Yrisarry JB, Smith M, Pereira LS, Raes D, Perrier A, Alves I, Walter I, Elliott R (2006) A recommendation on standardized surface resistance for hourly calculation of ETo by the FAO56 Penman-Monteith. Agric Water Manag 81(1):1–22

    Article  Google Scholar 

  • Allen, R.G., Wright, J.L., Rruitt, W.O., Pereira, L.S., Jensen, M.E., 2007. Water requirements. In: Hoffman G.J., Evans R.G., Jensen M.E., Martin D.L. and Elliot R.L. (eds). Design and operation of farm irrigation systems. ASABE 2nd ed., St. Joseph pp. 208–288.

  • Apadula F, Artuso F, Chamard P, De Nile F, di Sarra A, Lauria L, Longhetto A, Monteleone F, Piacentino S, Santaguida R, Vannini C, 2005. The network for background CO2 measurement in Italy. In: 12th WMO/IAEA Meeting of Experts on carbon dioxide concentration and related Tracer measurement techniques, World Meteorological Organization Global Atmosphere Watch Report n. 161(WMO TD no. 1275), pp. 173–175

  • Auer I, Böhm R, Maugeri M (2001) A new long-term gridded precipitation data set for the Alps and its applications for MAP and ALPCLIM. J Phys Chem Earth 26:421–424

    Article  Google Scholar 

  • Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143:134–144

    Article  Google Scholar 

  • Bethenod O, Ruget F, Katerji N, Combe L, Renard D (2001) Impact of atmospheric CO2 concentration on water use efficiency of maize. Maydica 46:75–80

    Google Scholar 

  • Brisson N, Levrault F (2010) Changement climatique, agriculture et forêt en France: simulations d’impacts sur les principales espèces. Livre vert du projet CLIMATOR. Editeur ADEM-France. p. 334

  • Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzui P, Burger P, Bussiere F, Cabidoche YM, Cellier P, Debaeke P, Gaudillere JP, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model STICS. Eur J Agron 18:309–332

    Article  Google Scholar 

  • Bruinsma J (ed) (2003) World agriculture: towards 2015/2030—a FAO perspective, Earthscan. FAO, London, p. 432

    Google Scholar 

  • Bruinsma J (2009) The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050? Expert meeting on how to feed the world in 2050. FAO, Rome , p. 33P24–26 June 2009

    Google Scholar 

  • Brunetti. M, Maugeri. M, Nanni. T (2001) Changes in total precipitation. Rainy days and extreme events in north-eastern Italy. Int J Climatol 21:861–871

    Article  Google Scholar 

  • Brutsaert WH (1982) In: Reidel D (ed) Evaporation into atmosphere: theory, history and application. Publishing Company, Dordrecth, p. 299

    Chapter  Google Scholar 

  • Calvet J-C, Noilhan J, Roujean J-L, Bessemoulin P, Cabelguenne M, Olioso A, Wigneron J-P (1998) An interactive vegetation SVAT model tested against data from six contrasting sites. Agric For Meteorol 92(2):73–95

    Article  Google Scholar 

  • Campi P, Palumbo AD, Mastrorilli M (2009) Effects of tree windbreak on microclimate and wheat productivity in a Mediterranean environment. Eur J Agron 30:220–227

    Article  Google Scholar 

  • Campi P, Navarro A, Giglio L, Palumbo AD, Mastrorilli M (2012) Modelling for water supply of irrigated cropping systems on climate change. Ital J Agron 7:93–99

    Google Scholar 

  • Choisnel E, de Villele O, Lacroze F (1992) Une approche uniformisée du calcul de l’évapotranspiration potentielle pour l’ensemble des pays de la Communauté Européene. Centre commun de recherche, Commission des communautés Européenne, p. 178. (In French)

  • Ciccarelli N, von Hardenberg J, Provenzale A, Ronchi C, Vargiu A, Pelosini R (2008) Climate variability in north-western Italy during the second half of the 20th century. Glob Planet Chang 63:185–195

    Article  Google Scholar 

  • Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33(9):1419–1438 pce_2181 1419..1438

    Google Scholar 

  • de Fraiture C, Wichelns D (2010) Satisfying future water demands for agriculture. Agric Water Manag 97(4):502–511

    Article  Google Scholar 

  • De Luis M, Gonzalez-Hidalgo JC, Longares LA, Stepanek P (2009) Seasonal precipitation trends in the Mediterranean Iberian Peninsula in second half of 20th century. Int J Climatol 29:1312–1323

    Article  Google Scholar 

  • DeJonge KC, Ascough JC II, Andales AA, Hansen NC, Garcia LA, Arabi M (2012) Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation. Agric Water Manag 115:92–103

    Article  Google Scholar 

  • Downing TE, Butterfield RE, Edmonds B, Knox JW, Moss S, Piper BS, Weatherhead EK (2003) With the CCDeW project team, CCDeW: climate change and demand for water. Research report. February 2003. Stockholm Environment Institute Oxford Office, Oxford

    Google Scholar 

  • Espadafor M, Lorite IJ, Gavilàn P, Berengena J (2011) An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agric Water Manag 98(6):1045–1061

    Article  Google Scholar 

  • Fischer G, Tubiello FN, van Velthuizen H, Wiberg DA (2007) Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technol Forecast Soc Chang 74(7):1083–1107

    Article  Google Scholar 

  • Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2°C global warming. Global Planet. Change 68(3):209–224

    Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet. Change 63(2008):90–104

    Google Scholar 

  • Gonzalez-Hidalgo JC, López-Bustins JA, Štepánek P, Martín-Vide J, de Luis M (2009) Monthly precipitation trends on the Mediterranean fringe of the Iberian Peninsula during the second half of the 20th century (1951–2000). Int J Climatol 29:1415–1429

    Article  Google Scholar 

  • Gusev YM, Nasonova ON (2003) Modelling heat and water exchange in the boreal spruce forest by the land surface model SWAP. J Hydrol 280(1–4):162–191

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric ASAE 1(2):96–99

    Article  Google Scholar 

  • Hoogenboom G, Jones JW, Wilkens PW, Porter CH, Batchelor WD, Hunt LA, Boote KJ, Singh U, Uryasev O, Bowen WT, Gijsman AJ, du Toit A, White JW, Tsuji G (2010) Decision support system for agrotechnology transfer (DSSAT) version 4. University of Hawaii, Honolulu

    Google Scholar 

  • Hopmans JW, Maurer E (2008) Impact of climate change on irrigation water availability, crop water requirements and soil salinity in the San Joaquin Valley, University of California Water Resources Center. Technical completion reports. Papers d011 (http://repositories.cdlib.org/wrc/tcr/sd011)

  • Hulme M, Jenkins GJ, Lu X, Turnpenny JR, Mitchell TD, Jones RG, Lowe J, Murphy JM, Hassell D, Boorman P, McDonald R, Hill S (2002) Climate change scenarios for the United Kingdom: the UKCIP02 scientific report. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, p. 120

    Google Scholar 

  • Hunsaker DJ, Kimball BA, Pinter Jr. PJ, Wall GW, LaMorte RL, Adamsen FJ, Leavitt SW, Thompson TL, Matthias AD, Brooks TJ (2000) CO2 enrichment and soil nitrogen effects on wheat evapotranspiration and water use efficiency. Agric For Meteorol 104(2):85–105

  • IPCC (2000) Summary for policymakers, emissions scenarios, a special report of IPCC working group III, intergovernmental panel on climate change, ISBN: 92–9169–113-5

  • IPCC (2007) In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, p. 976

    Google Scholar 

  • Jabloun M, Sahli A (2008) Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data application to Tunisia. Agric Water Manag 95:707–715

    Article  Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practice no. 70. ASCE, New York

    Google Scholar 

  • Katerji N, Perrier A (1983) Modélisation de l’évapotranspiration réelle d’une parcelle de luzerne: rôle d’un coefficient cultural. Agronomie 3(6):513–521 (In French)

    Article  Google Scholar 

  • Katerji N, Rana (2006) Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions. Agric For Meteorol 138:142–155

    Article  Google Scholar 

  • Katerji N, Rana G (2011) Crop reference evapotranspiration: a discussion of the concept, analysis of the process and validation. Water Resour Manag 25:1581–1600

    Article  Google Scholar 

  • Katerji N, Rana G (2014) FAO-56 methodology for determining water requirement of irrigated crops: critical examination of the concepts, alternative proposals and validation in Mediterranean region. Theor Appl Climatol 116(3):515–536

    Article  Google Scholar 

  • Katerji N, Mastrorilli M, Cherni HE (2010) Effects of corn deficit irrigation and soil properties on water use efficiency. A 25-year analysis of a Mediterranean environment using the STICS model. Eur J Agron 32(2):177–185

    Article  Google Scholar 

  • Knox JW, Weatherhead EK, Bradley RI (1997) Mapping the total volumetric irrigation water requirements in England and Wales. Agric Water Manag 33(1):1–18

    Article  Google Scholar 

  • Kumar L, Rietkerk M, van Langevelde F, van de Koppel J, van Andel J, Hearne J, de Ridder N, Stroosnijder L, Skidmore AK, Prins HHT (2002) Relationship between vegetation growth rates at the onset of the wet season and soil type in the Sahel of Burkina Faso: implications for resource utilisation at large scales. Ecol Model 149:143–152

    Article  Google Scholar 

  • Lana X, Serra C, Burgueño A (2003) Trends affecting pluviometric indices at the Fabra Observatory (Barcelona. NE Spain) from 1917 to 1999. Int J Climatol 23:315–332

    Article  Google Scholar 

  • Lecina S, Martinez-Cob A, Pérez PJ, Villalobos FG, Baselga JJ (2003) Fixed versus bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions. Agric Water Manag 60:181–198

    Article  Google Scholar 

  • Leflaive X, Witmer M, Martin-Hurtado R, Bakker M, Kram T, Bouwman L, Visser H, Bouwman A, Hilderink H., Kim K (2012) Water, in OECD environmental outlook to 2050: the consequences of inaction, Éditions OCDE. p 78

  • Lhomme JP, Mougou R, Mansour M (2009) Potential impact of climate change on durum wheat cropping in Tunisia. Clim Chang 96:549–564

    Article  Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  Google Scholar 

  • Lovelli S, Perniola M, Di Tommaso T, Ventrella D, Moriondo M, Amato M (2010) Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area. Agric Water Manag 97:287–1292

    Article  Google Scholar 

  • Makking GF (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11(3):277–288

    Google Scholar 

  • Maugieri M, Nanni T (1998) Surface air temperature variations in Italy: recent trends and an update to 1993. Theor Appl Climatol 61:191–196

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Fogg (Ed.) “The state and movement of water in living organism”. Soc Exp Biol Symp 19:205–234

    Google Scholar 

  • Moratiel R, Duran JM, Snyder R (2010) Responses of reference evapotranspiration to changes in atmospheric humidity and air temperature in Spain. Clim Res 44:27–40

    Article  Google Scholar 

  • Moratiel R, Snyder RL, Duran JM, Tarquis AM (2011) Trends in climatic variables and future reference evapotranspiration in Duero Valley (Spain). Nat Hazards Earth Syst Sci 11(1795–1805):2011

    Google Scholar 

  • Olioso A, Huard F, Guilioni L 2010. Prise en compte des effets du CO2 sur le calcul de l’évapotranspiration de référence. Climator 2010, Versailles, France, 17–18/06/2010, 66–67

  • Palumbo AD, Vitale D, Campi P, Mastrorilli M (2009) Climate change and irrigation water consumption: a case study of the olive and the tomato in Apulia. Ital J Agron 3:693–694

    Google Scholar 

  • Palumbo AD, Vitale D, Campi P, Mastrorilli M (2012) Time trend in reference evapotranspiration: analysis of a long series of agrometeorological measurements in Southern Italy. Irrig Drain Syst 25(4):395–411

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc Roy Soc A 193:120–146

    Article  Google Scholar 

  • Penman HL (1956) Estimating evaporation. Trans Am Geophys Union 37:43–50

    Article  Google Scholar 

  • Penman HL (1963) Technical com. 53. In: Vegetation and hydrology. Commonwealth bureau of soils, Harpenden, UK, p. 124

    Google Scholar 

  • Perez PJ, Lecina S, Castelli F, Martínez-Cob A, Villalobos FJ (2006) A simple parameterization of bulk canopy resistance from climatic variables for estimating hourly evapotranspiration. Hydrol Process 20(3):515–532

    Article  Google Scholar 

  • Perrier A (1975) Evapotranspiration réelle et potentielle des couverts végétaux. Ann Agron 26:229–243

    Google Scholar 

  • Perrier A (1985) Updated evapotranspiration and crop water requirement definitions. In “Les besoins en eau des cultures”. Conférence internationale de Paris. Perrier and Riou Ed. p. 885–887

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Raes D, Steduto P, Hsiao TC, Fereres E (2009) AquaCrop—the FAO crop model to simulate yield response to water: II. Agron J 101:438–447

    Article  Google Scholar 

  • Rana G, Katerji N (1998) A measurement based sensitivity analysis of Penman-Monteith actual evapotranspiration model for crops of different height and in contrasting water status. Theor Appl Climatol 60:141–149

    Article  Google Scholar 

  • Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13(2–3):125–153

    Article  Google Scholar 

  • Rana G, Katerji N, Mastrorilli M, El Moujabber M (1994) Evapotranspiration and canopy resistance of grass in a Mediterranean region. Theor Appl Climatol 50(1–2):61–71

    Article  Google Scholar 

  • Rodriguez-Diaz JA, Topcu S (2010) Sustaining Mediterranean irrigated agriculture under a changing climate. Outlook Agric 39(4):269–275

    Article  Google Scholar 

  • Rodriguez-Diaz JA, Weatherhead EK, Knox JW, Camacho E (2007) Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg Environ Chang 7(3):149–159

    Article  Google Scholar 

  • Sakellariou-Makrantonaki M, Vagenas IN (2006) Mapping crop evapotranspiration and total crop water requirements estimation in central Greece. European Water Bulletin of EWRA 13/14:3–13, E.W. Publications

  • Shahid S (2011) Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh. Clim Chang 105(3):433–453

    Article  Google Scholar 

  • Shen Y, Li S, Chen Y, Qi Y, Zhang S (2013) Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989–2010. Agric Water Manag 128:55–64

    Article  Google Scholar 

  • Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25(1):11–32. doi:10.1080/02508060008686794

    Article  Google Scholar 

  • Shuttleworth JS, Wallace JS (2009) Calculating the water requirements of irrigated crops in Australia using the Matt–Shuttleworth approach. Trans ASABE 52:1895–1906

    Article  Google Scholar 

  • Steduto P, Caliandro A, Rubino P, Ben Mechlia N, Masmoudi M, Martinez-Cob A, Jose Faci M, Rana G, Mastrorilli M, El Mourid M, Karrou M, Kanber R, Kirda C, El-Quosy D, El-Askari K, Ait Ali M, Zareb D, Snyder RL (1996) Penman-Monteith reference evapotranspiration estimates in the Mediterranean region. In: Camp CR, Sadler EJ, Yoder RE (eds) Evapotranspiration and irrigation scheduling. Proceedings of the International Conference, San Antonio, TX , pp. 357–364November 3–6

    Google Scholar 

  • Steduto P, Todorovic M, Caliandro A, Rubino P (2003) Daily reference evapotranspiration estimates by the Penman–Monteith equation in southern Italy. Constant vs. variable canopy resistance. Theor Appl Climatol 74:217–225

    Article  Google Scholar 

  • Steduto P, Raes D, Hsiao TC, Fereres E, Heng LK, Howell TA, Evett SR, Rojas-Lara BA, Farahani HJ, Izzi G, Oweis TY, Wani SP, Hoogeveen J, Geerts S (2009) Concepts and applications of AquaCrop: the FAO crop water productivity model. In: Cao W, White JW, Wang E (eds) Crop modeling and decision support. Springer, Berlin, Germany, pp. 175–191

  • Stull RB (1988) An introduction to boundary layer meteorology. Atmospheric Science Lbrary, Kluwer, p. 666

    Book  Google Scholar 

  • Tans P, Conway T, Nakazawa T (1989) Latitudinal distribution of the sources and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model. J Geophys Res 94(D4):5151–5172

    Article  Google Scholar 

  • Thom AS (1972) Momentum, mass and heat exchange of vegetation. Q J R Meteorol Soc 98:124–134

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. GeoRev NY 38:55–94

    Google Scholar 

  • Todorovic M (1999) Single-layer evapotranspiration model with variable canopy resistance. J Irr Drain Eng–ASCE 125:235–245

    Article  Google Scholar 

  • Toreti A, Desiato F (2008a) Changes in temperature extremes over Italy in the last 44 years. Int J Climatol 28:733–745

    Article  Google Scholar 

  • Toreti A, Desiato F (2008b) Temperature trend over Italy from 1961 to 2004. Theor Appl Climatol 91:51–58

    Article  Google Scholar 

  • Torres AF, Walker WR, McKee M (2011) Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agric Water Manag 98:553–562

    Article  Google Scholar 

  • Turc L (1961) Evaluation des besoins en eau d’irrigation. Evapotranspiration potentielle. Ann Agric 12:13–49 (In French)

    Google Scholar 

  • Vitale D, Rana G, Soldo P (2010) Trends and extremes analysis of daily weather data from a site in the Capitanata plain (southern Italy). Ital J Agron 5(2):133–143

    Article  Google Scholar 

  • Werner. PC, Gerstengarbe FW, Fraedrich K, Oesterle K (2000) Recent climate change in the North Atlantic/European sector. Int J Climatol 20:463–471

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194

    Google Scholar 

  • Zhang X, Yang F (2004) RClimDex (1.0) User Manual. Available from http://cccma.seos.uvic.ca/ETCCDMI/software.html

  • Zhi L, Fen-Li Z, Wen-Zhao L (2012) Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its projected changes during 2011–2099 on the Loess Plateau of China. Agric For Meteorol 154-155:147–155

    Article  Google Scholar 

  • Brunetti M, Maugieri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381

    Article  Google Scholar 

Download references

Acknowledgments

The research was carried out under the National Research Projects “Biodati” and “Collezioni A e O-R”. The research was funded by the Ministry of Agriculture, Food and Forestry Policies (MiPAAF), Italy. The authors thank Dr. Domenico Vitale for handling the climatic datasets and Dr. Cristina Muschitiello for the statistical analysis on the model performances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katerji, N., Rana, G. & Ferrara, R.M. Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region. Theor Appl Climatol 129, 923–938 (2017). https://doi.org/10.1007/s00704-016-1826-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1826-6

Keywords

Navigation