Skip to main content
Log in

Effect of reducing the topographical altitude of the Tibetan Plateau on a severe winter drought in eastern China as determined using RAMS

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Regional Atmospheric Modeling System (RAMS) was applied to the study of the effect of the topographical altitude of the Tibetan Plateau (TP) on a severe drought event which took place in eastern China from November 2008 to January 2009. Two simulations of this drought event were conducted: a control simulation (CNTRL run) using original model settings and a sensitive simulation (TOPO run), where no change other than to reduce the TP topography by 50 %. The results show that the CNTRL simulation validates RAMS by reproducing this drought event fairly accurately. However, as part of the TOPO simulation, the total heat flux showed a decrease over most parts of the TP, latent heat flux underwent a significant increase over the southeastern TP, contrary to sensible heat, and a universal decrease over eastern China; this led to an increase in precipitation over the southeastern TP and a decrease in precipitation over eastern China. The decrease of total heat flux over the TP is collocated with an anomalous anticyclonic circulation from the TP to the coasts of southeastern China. Changes in atmospheric circulation and low-level water vapor transport pathways were consistent with changes in precipitation. In general, reducing the topographical altitude of the TP worsens drought in eastern China and moreover causes a significant decrease in precipitation over southern China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bao Q, Yang J, Liu Y, Wu G, Wang B (2010) Roles of anomalous Tibetan plateau warming on the severe 2008 winter storm in Central-Southern China. Mon Weather Rev 138:2375–2384

    Article  Google Scholar 

  • Castro CL, Pielke RA Sr, Adegoke JO, Schubert SD, Pegion PJ (2007) Investigation of the summer climate of the contiguous United States and Mexico using the regional atmospheric modeling system (RAMS). Part II: Model Clim Var J Clim 20:3866–3887. doi:10.1175/JCLI4212.1

  • Cotton WR et al. (2003) RAMS 2001: current status and future directions. Meteorog Atmos Phys 82:5–29. doi:10.1007/s00703-001-0584-9

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global dataset of palmer drought severity index for 1870-2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130. doi:10.1175/JHM-386.1

    Article  Google Scholar 

  • Flohn H (1957) Large-scale aspects of the “summer monsoon” in South and East Asia. J Meteor Soc Japan 75:180–186

    Article  Google Scholar 

  • Gao H, Yang S (2009) A severe drought event in northern China in winter 2008–2009 and the possible influences of La Niña and Tibetan Plateau Journal of Geophysical Research: Atmospheres (1984–2012) 114 doi:10.1029/2009JD012430

  • Hasler N, Avissar R, Liston GE (2005) Issues in simulating the annual precipitation of a semiarid region in Central Spain. J Hydrometeor 6:409–422. doi:10.1175/JHM418.1

    Article  Google Scholar 

  • He X, Ding Y, He R, He J, Li Q (2007) Analysis on anomalous precipitation in southern China during winter monsoons. Acta Meteorologica Sinica 21:385–396

    Google Scholar 

  • Jiang H, Feingold G (2006) Effect of aerosol on warm convective clouds: aerosol-cloud-surface flux feedbacks in a new coupled large eddy model Journal of Geophysical Research: Atmospheres (1984–2012) 111 doi:10.1029/2005JD006138

  • Klemp JB, Wilhelmson RB (1978) The simulation of three-dimensional convective storm dynamics Journal of the Atmospheric Sciences 35:1070–1096. doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2

    Google Scholar 

  • Manabe S, Terpstra TB (1974) The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J Atmos Sci 31:3–42. doi:10.1175/1520-0469(1974)031<0003:TEOMOT>2.0.CO;2

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806. doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2

    Article  Google Scholar 

  • Mesinger F, Arakawa A (1976) Numerical methods used in atmospheric models, Volume I. Paper presented at the WMO, GARP Publication series n.17

  • Meyers MP, DeMott PJ, Cotton WR (1992) New primary ice-nucleation parameterizations in an explicit cloud model. J Appl Meteorol 31:708–721. doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2

    Article  Google Scholar 

  • Nan S, Zhao P (2011) Snowfall over central-eastern China and Asian atmospheric cold source in January. Int J Climatol 32:888–899. doi:10.1002/joc.2318

    Article  Google Scholar 

  • Obasi GOP (1994) WMO’s role in the international decade for natural disaster reduction Bulletin of the American. Meteorol Soc 75:1655–1661. doi:10.1175/1520-0477(1994)075 < 1655:WRITID > 2.0.CO;2

    Article  Google Scholar 

  • Pielke R et al. (1992) A comprehensive meteorological modeling system—RAMS. Meteorog Atmos Phys 49:69–91. doi:10.1007/BF01025401

    Article  Google Scholar 

  • Qiu J (2008) China: the third pole. Nature 454:393–396. doi:10.1038/454393a

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948. doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2

    Article  Google Scholar 

  • Saleeby SM, Cotton WR (2004) Simulations of the north American monsoon system. Part I: model analysis of the 1993 monsoon season. J Clim 17:1997–2018. doi:10.1175/1520-0442(2004)017<1997:SOTNAM>2.0.CO;2

    Article  Google Scholar 

  • Saleeby SM, Heever SC (2013) Developments in the CSU-RAMS aerosol model: emissions, nucleation, regeneration, deposition, and radiation. J Appl Meteorol Climatol 52:2601–2622. doi:10.1175/JAMC-D-12-0312.1

    Article  Google Scholar 

  • Saleeby SM, Cotton WR, Lowenthal D, Messina J (2013) Aerosol impacts on the microphysical growth processes of orographic snowfall. J Appl Meteorol Climatol 52:834–852. doi:10.1175/JAMC-D-12-0193.1

    Article  Google Scholar 

  • Shi X, Wang Y, Xu X (2008) Effect of mesoscale topography over the Tibetan Plateau on summer precipitation in China: a regional model study. Geophys Res Lett 35:116–122. doi:10.1029/2008GL034740

    Google Scholar 

  • Tao S, Wei J, Sun J, Zhao S (2009) The severe drought in east China dring November, December and January 2008–2009(in Chinese). Meteorol Monthly 35:3–10

    Google Scholar 

  • Trenberth KE, Overpeck JT, Solomon S (2004) Exploring drought and its implications for the future. EOS Transactions 85:27–27. doi:10.1029/2004EO030004

    Article  Google Scholar 

  • Tripoli GJ, Cotton WR (1980) A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida. J Appl Meteorol 19:27. doi:10.1175/1520-0450(1980)019

    Article  Google Scholar 

  • Ueda H, Kibe A, Saitoh M, Inoue T (2015) Snowfall variations in Japan and its linkage with tropical forcing. Int J Climatol 35:991–998. doi:10.1002/joc.4032

    Article  Google Scholar 

  • Wan R, Wu G (2007) Mechanism of the spring persistent rains over southeastern China Science in China. Series D: Earth Sci 50:130–144. doi:10.1007/s11430-007-2069-2

    Article  Google Scholar 

  • Wang B, Wu Z, Chang C-P, Liu J, Li J, Zhou T (2010) Another look at interannual-to-interdecadal variations of the east Asian winter monsoon: the northern and southern temperature modes. J Clim 23:1495–1512

    Article  Google Scholar 

  • Wu G, Li W (1997) The sensible heat air pump of Tibet Plateau and the Asia Summer Monsoon. (in Chinese). Paper presented at the In: Yeh, T C, ed. Zhao Jiuzhang Corpus

  • Wu B, Wang J (2002) Winter Arctic oscillation, Siberian High and East Asian Winter Monsoon. Geophys Res Lett 29:3–1. doi:10.1029/2002GL015373

    Google Scholar 

  • Wu G, Zhang Y (1999) Thermal and mechanical forcing of the Tibetan plateau and Asian monsoon onset. Part II: timing of the onset(in Chinese) Chinese. J Atmos Sci 23:11

    Google Scholar 

  • Yanai M, Li C (1994) Mechanism of heating and the boundary layer over the Tibetan plateau. Mon Weather Rev 122:305–323. doi:10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2

    Article  Google Scholar 

  • Yanai M, Li C, Song Z (1992) Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Japan 70:319–351

    Article  Google Scholar 

  • Yeh T, GZ C (1955) On the influence of the Qinghai-Xizang Plateau on east Asian circulation and weather in China (in Chinese). Chin Sci Bull 4:29–33

    Google Scholar 

  • Zhang H, McFarquhar GM, Saleeby SM, Cotton WR (2007) Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys Res Lett 34:176–192. doi:10.1029/2007GL029876

    Google Scholar 

  • Zhao P, Chen L (2001a) Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China Science in China. Series D: Earth Sci 44:858–864. doi:10.1007/bf02907098

    Article  Google Scholar 

  • Zhao P, Chen L (2001b) Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation. Adv Atmos Sci 18:106–116. doi:10.1007/s00376-001-0007-3

    Article  Google Scholar 

  • Zhou XJ, Ping Z, Chen JM, Chen LX, Li WL (2009) Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Science in China 11:1679–1693. doi:10.1007/s11430-009-0194-9

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Academy of Sciences (Grant No. XDB03030201), the National Natural Science Foundation of China (Grant Nos. 91337212, 41275010, and 41375009), the External Cooperation Program of the Chinese Academy of Sciences (Grant No. GJHZ1207), the CMA Special Fund for Scientific Research in the Public Interest (Grant No. GYHY201406001), the EU-FP7 “CORE-CLIMAX” Projects (Grant No. 313085), and CAS “Hundred Talent” program (Dr. Weiqiang Ma). The authors are grateful to the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunchun Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, C., Ma, Y., Han, C. et al. Effect of reducing the topographical altitude of the Tibetan Plateau on a severe winter drought in eastern China as determined using RAMS. Theor Appl Climatol 129, 891–900 (2017). https://doi.org/10.1007/s00704-016-1817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1817-7

Keywords

Navigation