Skip to main content
Log in

Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Potential evapotranspiration (PET) is one of the most critical parameters in the research on agro-ecological systems. The computational methods for the estimation of PET vary in data demands from very simple (empirically based), requiring only information based on air temperatures, to complex ones (more physically based) that require data on radiation, relative humidity, wind speed, etc. The current research is focused on three study areas in Greece that face different climatic conditions due to their location. Twelve PET formulae were used, analyzed and inter-compared in terms of their sensitivity regarding their input coefficients for the Ardas River basin in north-eastern Greece, Sperchios River basin in Central Greece and Geropotamos River basin in South Greece. The aim was to compare all the methods and conclude to which empirical PET method(s) better represent the PET results in each area and thus should be adopted and used each time and which factors influence the results in each case. The results indicated that for the areas that face Mediterranean climatic conditions, the most appropriate method for the estimation of PET was the temperature-based, Hamon’s second version (PETHam2). Furthermore, the PETHam2 was able to estimate PET almost similarly to the average results of the 12 equations. For the Ardas River basin, the results indicated that both PETHam2 and PETHam1 can be used to estimate PET satisfactorily. Moreover, the temperature-based equations have proven to produce better results, followed by the radiation-based equations. Finally, PETASCE, which is the most commonly used PET equation, can also be applied occasionally in order to provide satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexandris S, Kerkides P, Liakatas A (2006) Daily reference evapotranspiration estimates by the ‘Copais’ approach. Agric Water Manag 82:371–386

    Article  Google Scholar 

  • Allen RG (2000) Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J Hydrol 229(1–2):27–41

    Article  Google Scholar 

  • Allen R, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements, Journal of Irrigation and Drainage Engineering, Paper 56. Food and Agriculture Organization (FAO), Rome, 300 p

    Google Scholar 

  • Ampas V (2010) Research and estimation of meteorological parameters with direct impact on agriculture, Ph.D. Thesis. Aristotle University of Thessaloniki, Greece

    Google Scholar 

  • Ampas V, Baltas E (2012) Sensitivity analysis of different evapotranspiration methods using a new sensitivity coefficient. Glob NEST J 14(3):335–343

    Google Scholar 

  • Anderton S, Latron J, Gallart F (2002) Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model. Hydrol Process 16:333–353

    Article  Google Scholar 

  • ASCE Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute (2005) The ASCE standardized reference evapotranspiration equation. In: Allen R, Walter IA, Elliot RL, Howell TA, Itenfisu D, Jensen ME, and Snyder RL (eds.), ASCE-EWRI Committee Report, January 2005. ASCE, Reston, VA, p. 172

  • Babajimopoulos C, Antonopoulos Β, Grigoriadis D, Ilias Α (1992) Sensitivity analysis of the Penman method. Proceedings of 5th Conference of H.Y.U, p. 132–140.

  • Beres DL, Hawkins DM (2001) Plackett-Burman technique for sensitivity analysis of many-parametered models. Ecol Model 141:171–183

    Article  Google Scholar 

  • Beven K (1979) A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. J Hydrol 1979(44):169–190

    Article  Google Scholar 

  • Bleta A, Nastos P, Matzarakis A (2014) Assessment of bioclimatic conditions on Crete Island, Greece. Reg Environ Chang 14:1967–1981

    Article  Google Scholar 

  • Bormann H (2011) Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations. Clim Chang 104:729–753

    Article  Google Scholar 

  • Caprio J (1974) The solar thermal unit concept in problems related to plant development ant potential evapotranspiration. In: Lieth H (eds.), Phenology and seasonality modeling. Springer-Verlag, New York, pp. 353–364

  • Cho SM, Lee MW (2001) Sensitivity considerations when modelling hydrologic processes with digital elevation model. J Am Water Resour Assoc 37(4):931–934

    Article  Google Scholar 

  • Coleman G, DeCoursey DG (1976) Sensitivity and model variance analysis applied to some evaporation and evapotranspiration models. Water Resour Res 12(5):873–879

    Article  Google Scholar 

  • Dingman SL (1994) Physical hydrology. Macmillan Publishing Co, New York, NY

    Google Scholar 

  • Dingman SL (2002) Physical hydrology, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Eitzinger J, Marinkovic D, Hösch J (2002) Sensitivity of different evapotranspiration calculation methods in different crop-weather models. Proceedings of iEMSs, June 24–27, 2002, Lugano Switzerland

    Google Scholar 

  • Estevez J, Gavilan P, Berengena J (2009) Sensitivity analysis of a Penman-Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrol Process 23:3342–3353

    Article  Google Scholar 

  • Fisher JB, DeBiase TA, Qi Y, Xu M, Goldstein AH (2005) Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environ Model Softw 20(6):783–796

    Article  Google Scholar 

  • Gong LB, Xu CY, Chen DL, Haldin S, Chen YQD (2006) Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J Hydrol 329:620–629

  • Grismer ME, Orang M, Snyder R, Matyac R (2002) Pan evaporation to reference evapotranspiration conversion methods. J Irrig Drain Eng 128(3):180–184

    Article  Google Scholar 

  • Haan CT (2002) Statistical methods in hydrology, 2nd edn. Iowa State University Press, Ames, Iowa, 378pp

    Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • Hou L, Zou S, Xiao H, Yang Y (2013) Sensitivity of the reference evapotranspiration to key climatic variables during the growing season in the Ejina oasis northwest China. SpingerPlus 2(Suppl 1):S4

    Article  Google Scholar 

  • Hunsaker DJ, Pinter PJ, Cai H (2002) Alfalfa basal crop coefficients for FAO-56 procedures in the desert regions of the southwestern US, Trans. ASAE 45(6):1799–1815

    Article  Google Scholar 

  • Irmak S, Payero JO, Martin DL, Irmak A, Howell TA (2006) Sensitivity analyses and sensitivity coefficients of standardized daily ASCE Penman-Monteith equation. J Irrig Drain Eng 132(6):564–578

    Article  Google Scholar 

  • Jabloun M, Sahli A (2008) Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data—application to Tunisia. Agric Water Manag 95:707–715

    Article  Google Scholar 

  • Jacobs JM, Satti SR (2001) Evaluation of reference evapotranspiration methodologies and AFSIRS crop water use simulation model. Final Rep., St. Johns River Water Management District, Palatka, FL

    Google Scholar 

  • Jensen ME, Haise HR (1963) Estimating evapotranspiration from solar radiation. J Irrig Drain Eng 89:15–41

    Google Scholar 

  • Kannan N, White SM, Worrall F, Whelan MJ (2007) Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modeling in SWAT-2000. J Hydrol 332:456–466

    Article  Google Scholar 

  • Kotsopoulos S, Babajimopoulos C (1997) Analytical estimation of modified Penman equation parameters. J Irrig Drain Eng 123(4):253–256

    Article  Google Scholar 

  • Kotsopoulos S, Kalfountzos D, Alexiou I, Zerva G, Karamaligas C, Vyrlas P (2003) Actual evapotranspiration and soil moisture studies in irrigated cotton fields. European Water 3(4):25–31

    Google Scholar 

  • Kotsopoulos S, Nastos P, Lazogiannis K, Poulos S, Ghionis G, Alexiou I, Panagopoulos A, Farsirotou E, Alamanis N, (2015) Evaporation, evapotranspiration and crop water requirements under present and future climate conditions at Pinios delta plain, 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3–5 September 2015, Global Network on Environmental Science and Technology (Global NEST), University of Aegean, Mytilene, Greece, CEST2015_00647

  • Lenhart T, Eckhardt K, Fohrer N, Frede HG (2002) Comparison of two different approaches of sensitivity analysis. Phys Chem Earth 27:645–654

    Article  Google Scholar 

  • Liu SM, Xu ZW, Zhu ZL, Jia ZZ, Zhu MJ (2013) Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River basin. China J Hydrol 487:24–38

    Article  Google Scholar 

  • Lu JB, Sun G, McNulty SG, Amatya DM (2005) A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Am Water Resour Assoc 41(3):621–633

    Article  Google Scholar 

  • Manolas E, Tampakis S, Gkaintatzis S, Mavridou-Mavroudi S (2010) Recreation in the area of River Ardas: the views of elementary school pupils. Tourismos: An International Multidisciplinary Journal of Tourism 5(2):99–114

    Google Scholar 

  • Maris F, Kitikidou K, Paparrizos S, Potouridis S (2014) Stream flow quantile regression modeling using land use information in the Sperchios River basin (Central Greece). Carpathian J Earth Environ Sci 9(1):5–10

    Google Scholar 

  • Matzarakis A (2007) Climate and bioclimate information for tourism - The example of Evros prefecture in Greece, In: Matzarakis A, de Freitas CR, and Scott D (eds.), Developments in tourism climatology. Commision on Climate, Tourism and Recreation, International Society of Biometeorology, p. 289, Freiburg, Germany

  • Matzarakis A, Katsoulis VD (2006) Sunshine duration hours over the Greek region. Theor Appl Climatol 83:107–120

  • Matzarakis A, Nastos P (2011) Analysis of tourism potential for Crete Island, Greece. Glob NEST J 13(2):141–149

    Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007a) Modeling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51(4):323–334

    Article  Google Scholar 

  • Matzarakis A, Ivanova D, Balafoutis C, Makrogiannis T (2007b) Climatology of growing degree days in Greece. Clim Res 34:233–240

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54(2):131–139

    Article  Google Scholar 

  • McCuen HR (1974) A sensitivity and error analysis of procedures used for estimating evapotranspiration. Water Resour Bull 10(3):486–498

    Article  Google Scholar 

  • Muthers S, Matzarakis A (2010) Use of beanplots in applied climatology—a comparison with boxplots. Meteorol Z 6:639–642

    Google Scholar 

  • Nastos P, Kapsomenakis J, Kotsopoulos S, Poulos S (2015) Future changes of reference evapotranspiration over Thessaly Plain, Greece, based on regional climate models’ simulations, 9th World Congress of EWRA. Water Resources Management in a Changing World: Challenges and Opportunities, Istanbul, Turkey

    Google Scholar 

  • Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2—towards a simple and efficient potential evapotranspiration model for rainfall-runoff modeling. J Hydrol 303:290–306

    Article  Google Scholar 

  • Paparrizos S, Maris F (2016) Hydrological simulation of Sperchios River basin in Central Greece using the MIKE SHE model and Geographic Information Systems. Appl Wat Sci doi: 10.1007/s13201-015-0271-5

  • Paparrizos S, Maris F, Matzarakis A (2014) Estimation and comparison of potential evapotranspiration based on daily and monthly data from Sperchios River valley in Central Greece. Glob NEST J 16(2):204–217

    Google Scholar 

  • Paparrizos S, Maris F, Papageorgiou O, Karagiorgos K, Fuchs S, Matzarakis A (2015) Sensitivity analysis of various potential evapotranspiration formulas for Crete Island in Greece. Geophysical Research Abstracts, 17, EGU2015-8556-1, Vienna, Austria

    Google Scholar 

  • Paparrizos S, Maris F, Matzarakis A, (2016a). Mapping of drought for Sperchios River basin in Greece. Hydrological Sci J (In press) http://dx.doi.org/10.1080/02626667.2014.965175

  • Paparrizos S, Maris F, Matzarakis A (2016b) Integrated analysis of present and future responses of precipitation over selected areas with different climate conditions. Atmos Res 169:199–208

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Priestley CH, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Rosenberry DO, Stannard DI, Winter TC, Martinez ML (2004) Comparison of 13 equations for determining evapotranspiration from a prairie wetland, Cottonwood Lake Area, North Dakota, USA. Wetl Ecol Manag 24(3):483–497

    Google Scholar 

  • Saxton KE (1975) Sensitivity analysis of the combination evapotranspiration equation. Agric Meteorol 15:343–353

    Article  Google Scholar 

  • Schmugge TJ, Andre JC (2012) Land surface evaporation: measurement and parameterization, Springer Science & Business Media, Springer, New York

  • Snedecor GW, Cochran G (1989) Statistical methods, 8th edn. Iowa State University, Ames, Iowa, 803 pp

    Google Scholar 

  • Stobbelaar DJ, Kuiper J, Van Mansvelt J, Kabourakis E (2000) Landscape quality on organic farms as components in the landscape. Agric Ecosyst Environ 77:79–93

    Article  Google Scholar 

  • Valiantzas J (2006) Simplified versions for the Penman evaporation equation using routine weather data. J Hydrol 331:690–702

    Article  Google Scholar 

  • Valiantzas JD (2013a) Simplified reference evapotranspiration formula using an empirical impact factor for Penman’s aerodynamic term. J Irrig Drain Eng 18(1):108–114

    Google Scholar 

  • Valiantzas JD (2013b) Simple ET0 forms of Penman’s equation without wind and/ or humidity data. I Theoretical development. J Irrig Drain Eng 139(1):1–8

    Article  Google Scholar 

  • Valiantzas JD (2013c) Simple ET0 forms of penman’s equation without wind and/or humidity data II: comparisons with reduced set-FAO and other methodologies. J Irrig Drain Eng 139(1):9–19

    Article  Google Scholar 

  • Valiantzas JD (2013d) Simplified forms for the standardized FAO-56 Penman-Monteith reference evapotranspiration using limited weather data. J Hydrol 505:13–23

    Article  Google Scholar 

  • Van Griensven A, Francos A, Bauwens W (2002) Sensitivity analysis and auto-calibration of an integral dynamic model for river water quality. Water Sci Technol 45(9):325–332

    Google Scholar 

  • Van Griensven A, Meixner T, Grunwald S, Bishop T, Dilluzio M, Srinivasan R (2006) A global sensitivity analysis tool for the parameters of multivariable catchment models. J Hydrol 324(1–4):10–23

    Article  Google Scholar 

  • Wendling U, Müller J, Schwede K (1984) Ergebnisse von Verdunstungsmessungen über Gras mit einem Off-line-Datenerfassungssystem. Zeitschrift für Meteorologie 34(2):190–202

    Google Scholar 

  • Winter TC, Rosenberry DO, Sturrock AM (1995) Evaluation of 11 equations for determining evaporation for a small lake in the north central United States. Water Resour Res 31:983–993

    Article  Google Scholar 

  • Xu CY, Singh VP (2002) Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour Manag 16(3):197–219

    Article  Google Scholar 

  • Xystrakis F, Matzarakis A (2011) Evaluation of 13 empirical reference potential evapotranspiration equations on the island of Crete in southern Greece. J Irrig Drain Eng 137:211–222

    Article  Google Scholar 

  • Yao H (2009) Long-term study of lake evaporation and evaluation of seven estimation methods: results from Dickie Lake, South-Central Ontario, Canada. J Water Resour Protect 1(2):59–77

    Article  Google Scholar 

  • Yin Y, Wu S, Zheng D, Yang Q (2008) Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China. Agric Water Manag 95:77–84

    Article  Google Scholar 

Download references

Acknowledgments

The input meteorological data were obtained from the Hellenic National Meteorological Service (HNMS). For the stations of Edirne (Turkish territory) and Kurdjali (Bulgarian territory), the data were obtained from www.ogimet.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyridon Paparrizos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paparrizos, S., Maris, F. & Matzarakis, A. Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions. Theor Appl Climatol 128, 745–759 (2017). https://doi.org/10.1007/s00704-015-1728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1728-z

Keywords

Navigation