Skip to main content

Advertisement

Log in

Influence of climate variability on land degradation (desertification) in the watershed of the upper Paraíba River

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The study aimed to evaluate the influence of the rainfall and aridity index variability on the process of land degradation (desertification) in order to establish the current degree of increase or decrease in dryness in the watershed of the upper Paraíba River. It included all or part of 18 municipalities, distributed in the western and eastern Cariri regions of Paraíba state. The monthly average values of reference evapotranspiration according to Penman-Monteith method were applied in the annual hydrological balance for obtaining the annual time series of the aridity index for the period from 1950 to 2013. The Mann-Kendall test (MK) was used for trend identification in the annual time series of rainfall and aridity index, at a significance level of α = 0.05. The slope of the trends was obtained by Sen’s method, and the values of rainfall, aridity index, and statistics MK were spatially kriging, to generate thematic maps. The results indicate an increase in rainfall and reduced dryness in the watershed of the upper Paraíba River, conditions that do not contribute to trigger the process of land degradation (desertification), indicating that the cause of this environmental problem is not climatic. Thus, it can be suggested that the observed manifestations of land degradation (desertification) derive much of human than climatic actions. However, there is a trend of increasing dryness and reducing rainfall in the central portion of the watershed, with stronger core in the location of Camalaú. The spatial distribution of rainfall and aridity index shows that minimum values of rainfall coincide with maximum values of the aridity index. Higher values of rainfall were observed in the northwestern portion of the watershed, while the northeast and southeast portions had the lower rainfall values, with the strongest core in the locality of Cabaceiras. The eastern sector of the watershed has high dryness, unlike the western sector, rainier, with minimum values of dryness. In the western portion of the watershed, the aridity index was in the range considered semiarid, with moderate susceptibility to land degradation process. Similarly, in the eastern portion, the dryness stood in the range considered arid, with high susceptibility. The cores with more pronounced dryness correspond to the municipalities of Cabaceiras, Caraúbas, and São João do Cariri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahani H, Kherad M, Kousari MR, Roosmalen LV, Aryanfar R, Hosseini SM (2013) Non-parametric trend analysis of the aridity index for three large arid and semi-arid basins in Iran. Theor Appl Climatol 112:553–564. doi:10.1007/s00704-012-0747-2

    Article  Google Scholar 

  • Allen, RG, Pereira, LS, Raes, D, Smith, M (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrig. Drain. Paper 56, Roma

  • Almeida HA, Silva L (2008) Determinação das características hídricas da microbacia de drenagem da barragem Vaca Brava. Rev Bras Agromet 16:77–86

    Google Scholar 

  • Almeida-Filho R, Carvalho CM (2010) Mapping land degradation in the gilbues region, northeastern Brazil, using Landsat TM images. Int J Remote Sens 31:1087–1094. doi:10.1080/01431160903260957

    Article  Google Scholar 

  • Brasil (2004) Programa de Ação Nacional de Combate à Desertificação e Mitigação dos Efeitos da Seca, PAN-BRASIL. MMA, Brasília

    Google Scholar 

  • Back JA (2001) Aplicação de análise estatística para identificação de tendências climáticas. Pesq. Agropec. Brasileira 36:717–726

    Article  Google Scholar 

  • Barbosa HA, Huete AR, Baethgen WE (2006) A 20-year study of NDVI variability over the northeast region of Brazil. J Arid Environ 67:288–307. doi:10.1016/j.jaridenv.2006.02.022

    Article  Google Scholar 

  • Barbosa HA, Lakshmi Kumar TV, Silva LRM (2015) Recent trends in vegetation dynamics in the South America and their relationship to rainfall. Nat Hazards 77:883–899. doi:10.1007/s11069-015-1635-8

    Article  Google Scholar 

  • Becerril-Piña R, Mastachi-Loza CA, Gonzalez-Sosa E, Díaz-Delgado C, Bâ KM (2015) Assessing desertification risk in the semi-arid highlands of central Mexico. J Arid Environ 120:4–13. doi:10.1016/j.jaridenv.2015.04.006

  • Bourque CPA, Hassan QK (2009) Vegetation control in the long-term self-stabilization of the Liangzhou Oasis of the Upper Shiyang River watershed of West-Central Gansu. Northwest China Earth Interact 13:1–22. doi:10.1175/2009EI286.1

    Article  Google Scholar 

  • Brinkmann K, Dickhoefer U, Schlecht E, Buerker A (2011) Quantification of aboveground rangeland productivity and anthropogenic degradation on the Arabian Peninsula using Landsat imagery and field inventory data. Remote Sens Environ 115:465–474. doi:10.1016/j.rse.2010.09.016

    Article  Google Scholar 

  • Cavalcanti ER, Coutinho SFS (2005) Desertification in the Northeast of Brazil: the natural resources use and the land degradation. Soc Nat (Special Issue) 1:891–890

    Google Scholar 

  • Cavalcanti EP, Silva VPR, Sousa F de AS (2006) Programa computacional para a estimativa da temperatura do ar para a região Nordeste do Brasil. Rev Bras Eng Agric e Ambient 10:140–147. doi:10.1590/S1415-43662006000100021

  • Colantoni A, Ferrara C, Perini L, Salvati L (2015) Assessing trends in climate aridity and vulnerability to soil degradation in Italy. Ecol Indic 48:599–604. doi:10.1016/j.ecolind.2014.09.031

    Article  Google Scholar 

  • Conti JB (2005) A questão climática do nordeste brasileiro e os processos de desertificação. Rev Bras Climatol 1:7–14

    Google Scholar 

  • Conti JB (2011) Clima e meio ambiente, Ed edn. São Paulo, Atual

    Google Scholar 

  • Croitoru AE, Holobaca IH, Lazar C, Moldovan F, Imbroane A (2012) Air temperature trend and the impact on winter wheat phenology in Romania. Clim Chang 111:393–410. doi:10.1007/s10584-011-0133-6

    Article  Google Scholar 

  • Croitoru A, Piticar A, Imbroane AM, Burada DC (2013a) Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theor Appl Climatol 112:597–607. doi:10.1007/s00704-012-0755-2

    Article  Google Scholar 

  • Croitoru AE, Piticar A, Dragotă CS, Burada DC (2013b) Recent changes in reference evapotranspiration in Romania. Global and Planetary Change. 111:127–137. doi:10.1016/j.gloplacha.2013.09.004

    Article  Google Scholar 

  • Costa AC, Soares A (2012) Local spatiotemporal dynamics of a simple aridity index in a region susceptible to desertification. J Arid Environ 87:8–18. doi:10.1016/j.jaridenv.2012.05.005

    Article  Google Scholar 

  • Erasmi S, Maurer F, Petta RA, Gerold G, Barbosa MP (2009) Inter-annual variability of the normalized difference vegetation index over Northeast Brazil and its relation to rainfall and El Niño Southern Oscillation. Geo-Öko 30:185–206

    Google Scholar 

  • Erasmi S, Schucknecht A, Barbosa MP, Matschullat J (2014) Vegetation greenness in Northeastern Brazil and its relation to ENSO warm events. Remote Sens 2014(6):3041–3058. doi:10.3390/rs6043041

    Article  Google Scholar 

  • Geist HJ, Lambin EF (2004) Dynamic causal patterns of desertification. Bioscience 54:817–829. doi:10.1641/0006-3568(2004)054[0817

    Article  Google Scholar 

  • Hrnjak I, Lukié T, Gavrilov MB, Markovié SB, Unkasevié M, Tosié I (2013) Aridity in Vojvodina. Serbia Theor Appl Climatol 115:323–332. doi:10.1007/s00704-013-0893-1

    Article  Google Scholar 

  • He Y (2014) The effect of precipitation on vegetation cover over three landscape units in a protected semi-arid grassland: temporal dynamics and suitable climatic index. J Arid Environ 109:74–82. doi:10.1016/j.jaridenv.2014.05.022

    Article  Google Scholar 

  • Liu X, Zhang D, Luo Y, Liu C (2013) Spatial and temporal changes in aridity index in northwest China: 1960 to 2010. Theor Appl Climatol 112:307–316. doi:10.1007/s00704-012-0734-7

    Article  Google Scholar 

  • Mao D, Wang Z, Luo L, Ren C (2012) Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. Int J Appl Earth Obs Geoinf 18:528–536. doi:10.1007/s11442-013-1062-2

    Article  Google Scholar 

  • Marland G, Pielke RA, Apps M, Avissar R, Betts RA, Davis KJ, Frumhoff PC, Jackson ST, Joyce LA, Kauppi P, Katzenberger J, MacDicken KG, Neilson RP, Niles JO, Niyogi DS, Norby RJ, Pena N, Sampson N, Xue Y (2003) The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Clim Pol 3:149–157. doi:10.1016/S1469-3062(03)00028-7

    Article  Google Scholar 

  • Millán MMMJ, Estrela MJ, Sanz E, Mantilla M (2004) Climatic feedbacks and desertification: the Mediterranean model. J Clim 18:684–701. doi:10.1175/JCLI-3283.1

    Article  Google Scholar 

  • Molion LCB, Bernardo SO (2002) Uma revisão da dinâmica das chuvas no nordeste brasileiro. Rev Bras Meteorol 17:1–10

    Google Scholar 

  • Nascimento SS, Alves JJA (2008) Ecoclimatologia do Cariri Paraibano. Rev Geogr Acadêmica 2:28–41

    Google Scholar 

  • Nastos PT, Politi N, Kapsomenakis J (2013) Spatial and temporal variability of the aridity index in Greece. Atmos Res 119:140–152. doi:10.1016/j.atmosres.2011.06.017

    Article  Google Scholar 

  • Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW (2013) Global desertification: drivers and feedbacks. Adv. Wat. Res. 51:326–344. doi:10.1016/j.advwatres.2012.01.013

    Article  Google Scholar 

  • Oyama MD, Nobre CA (2004) Climatic consequences of a large-scale desertification in Northeast Brazil: a GCM simulation study. J Clim 18:684–701. doi:10.1175/1520-0442(2004)017<3203:CCOALD>2.0.CO;2

    Google Scholar 

  • Oliveira LFC, Fioreze AP, Medeiros AMM, Silva MAS (2010) Comparação de metodologias de preenchimento de falhas de séries históricas de precipitação pluvial anual. Rev Bras de Eng Agrí e Ambient 14:1186–1192. doi:10.1590/S1415-43662010001100008

    Article  Google Scholar 

  • Pereira AR (2005) Simplificando o balanço hídrico de Thornthwaite-Mather. Bragantia 64:311–313. doi:10.1590/S0006-87052005000200019

    Article  Google Scholar 

  • Silva VPR (2004) On climate variability in Northeast of Brazil. J Arid Environ 58:575–596. doi:10.1016/j.jaridenv.2003.12.002

    Article  Google Scholar 

  • Sivakumar MVK (2007) Interactions between climate and desertification. Agric For Meteorol 142:143–155. doi:10.1016/j.agrformet.2006.03.025

    Article  Google Scholar 

  • Shaohong WU, Yunhe YIN, Du Z, Qinye Y (2005) Aridity/humidity status of land surface in China during the last three decades. Scien. China 48:1510–1518. doi:10.1360/04yd0009

    Article  Google Scholar 

  • Schucknecht A, Erasmi S, Niemeyer I, Matschullat J (2013) Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. Eur J Remote Sens 46:40–59

    Article  Google Scholar 

  • Schucknecht A, Matschullat J, Erasmi S (2012) Spatial and temporal variability of vegetation status in Paraíba, Northeastern Brazil. Geoscience and Remote Sensing Symposium (IGARSS), 32–35. doi:10.1109/IGARSS.2012.6351643

  • Some’e BS, Ezani A, Tabari H (2013) Spatiotemporal trends of aridity index in arid and semi-arid regions of Iran. Theor Appl Climatol 111:149–160. doi:10.1007/s00704-012-0650-x

    Article  Google Scholar 

  • Souza BI, Silans AMBP, Santos JB (2004) Contribuição ao estudo da desertificação na Bacia do Taperoá. Rev. Bras. de Eng. Agrí. e Ambient. 8:292–298. doi:10.1590/S141543662004000200019

    Article  Google Scholar 

  • Souza BI, Suertegaray DMA, Lima ERV (2010) Políticas Públicas, uso do solo e desertificação nos Cariris Velhos (PB/Brasil). Scripta Nov. 14:311–324

  • Tabari H, Nikbakht J, Hosseinzadeh Talaee P (2012) Identification of trend in reference evapotranspiration series with serial dependence in Iran. Water Resour Manag 26:2219–2232. doi:10.1007/s11269-012-0011-7

    Article  Google Scholar 

  • UNCCD (1994) United Nations Convention to Combat Desertification Intergovernmental. Negotiating Committee for a Convention to Combat Desertification. U.N. Doc. A/AC.241/27, 33 I.L.M. 1328. New York: United Nations

  • Xu D, Li C, Song X, Ren H (2014) The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. Catena 123:11–22. doi:10.1016/j.catena.2014.07.004

    Article  Google Scholar 

  • Yamamoto JK, Landim PMB (2013) Geoestatística: conceitos e aplicações. São Paulo, Oficina de Textos

    Google Scholar 

  • Zhang Q, Xu YC, Zhang Z (2009) Observed changes of drought/wetness episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index. Theor Appl Climatol 98:89–99. doi:10.1007/s00704-008-0095-4

    Article  Google Scholar 

  • Zarch MAA, Sivakumar B, Sharma A (2015) Assessment of global aridity change. J. of Hydrology. 520: 300–313. doi: org/10.1016/j.jhydrol.2014.11.033

Download references

Acknowledgments

The authors would like to thank the National Council of Scientific and Technological Development - CNPq for granting scholarship and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financing the Pró-Alertas (88887.091737/2014-01) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Antonio Costa dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, T.L.B., de Azevedo, P.V. & Costa dos Santos, C.A. Influence of climate variability on land degradation (desertification) in the watershed of the upper Paraíba River. Theor Appl Climatol 127, 741–751 (2017). https://doi.org/10.1007/s00704-015-1661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1661-1

Keywords

Navigation