Skip to main content

Advertisement

Log in

Local and remote climatic impacts due to land use degradation in the Amazon “Arc of Deforestation”

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Many numerical studies, among them, global and regional models, have been used to simulate climatic impact due to Amazon deforestation. Most of them did not consider deforestation as usually observed and the induced dynamic changes. The present study explores the physical impacts due to Amazon deforestation by considering local and remote changes in the circulation and thermodynamics. For this, numerical experiments were conducted with RegCM3 using a relatively fine horizontal grid spacing (50 km), more realistic deforested areas (similar to the highway-network-shaped), and an updated land use map. The studied period was 2001–2006 October–March. As in most previous studies focusing on Amazon deforestation, the RegCM3-simulated air temperature increases over degraded areas, ranging from 1.0 to 2.5 °C, and precipitation decreases of around 10 %. This result is mainly related to depletion in evapotranspiration rates provided by lesser soil water extraction by the degraded vegetation. The weakening of upward motion in the mid-upper troposphere is an associated mechanism that explains the precipitation decrease after Amazon deforestation. A new result is the simulated precipitation increase, about 10 %, over the eastern South America and the adjacent South Atlantic Ocean. In these areas, the precipitation increase during October–March is associated with intensification of upper-level high pressure (the Bolivian high) coupled with negative geopotential height anomalies southeastward of the center of the high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berbet, MLC, Costa MH (2003) Climate change after tropical deforestation: seasonal variability of surface albedo and its effects on precipitation change, J Clim, 16, 2099 – 2104. doi:10.1175/1520-0442(2003)016<2099:CCATDS>2.0.CO;2

  • Betts RA, Cox PM, Collins M, Harris PP, Huntingford C, Jones CD (2004) The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Teor Appl Climatol 78:157–175. doi:10.1007/s00704-004-0050-y

    Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Canziani PO; Benitez GC (2012) Climate impacts of deforestation/land-use changes in central South America in the PRECIS Regional Climate Model: mean precipitation and temperature response to present and future deforestation scenarios. Volume 2012, Article ID 972672, 20 pages doi:10.1100/2012/972672

  • Carvalho LMV, Jones C, Liebmann B (2002) Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15:2377–2394.

    Article  Google Scholar 

  • Charney J, William JQ, Shu-hsien C, Kornfield J (1977) A comparative study of the effects of albedo change on drought in semi-arid regions. J Atmos Sci 34:1366–1385. doi:10.1175/15200469(1977)034<1366:ACSOTE>2.0.CO;2

    Article  Google Scholar 

  • Costa MH, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J Clim 13:18–34. doi:10.1029/2007GL030612

    Article  Google Scholar 

  • Costa MH, Yanagi SNM, Souza PJOP, Ribeiro A, Rocha EJP (2007) Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys Res Lett 34:L07706. doi:10.1029/2007GL029271

    Google Scholar 

  • da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of Regional Climate Model version 3 simulations. J Geophys Res 114:D10108. doi:10.1029/2008JD010212

    Article  Google Scholar 

  • da Rocha RP, Cuadra SV, Reboita MS, Kruger LF, Ambrizzi T, Krusche N (2012) Effects of RegCM3 parameterizations on simulated rainy season over South America. Clim Res 52:253–265. doi:10.3354/cr01065

    Article  Google Scholar 

  • Davin EL, Stockli R, Jaeger EB, Levis S, Seneviratne SI (2011) COSMO-CLM2: a new version of the COSMO-CLM model coupled to the community land model. Clim Dyn 37:1889–1907. doi:10.1007/s00382-011-1019-z

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A (1988) Modelling tropical deforestation: a study of GCM land-surface parameterizations. QJR Meteorol Soc 114:439–462

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR community climate model. NCAR Tech. Note, NCAR/TN-387. National Center for Atmospheric Research, Boulder

    Google Scholar 

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167.

    Article  Google Scholar 

  • Fearnside P (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol 19(3):680–688

    Article  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240.

    Article  Google Scholar 

  • Findell KL, Knutson TR, Milly PCD (2006) Weak simulated extratropical responses to complete tropical deforestation. J Clim 19:2835–2850.

    Article  Google Scholar 

  • Gedney N, Valdes PJ (2000) The effect of Amazonian deforestation on the Northern Hemisphere circulation and climate. Geophys Res Lett 27:3053–3056

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993) Development of a second generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121: 2814−2832

  • Giorgi F, Bi XI, Pal JS (2004) Mean, inter-annual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Clim Dyn 22:733–756. doi:10.1007/s00382-004-0409-x

    Article  Google Scholar 

  • GLCC (2005) Global Landcover 2000, http://www-gvm.jrc.it/glc2000/ See also http://edcdaac.usgs.gov/glcc/globdoc2 0.asp

  • Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciação MT, Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Garcia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vicent L (2006) Trends in total and extreme South American rainfall 1960-2000 and links with sea surface temperature. J Clim 19(8):1490–1512

    Article  Google Scholar 

  • Henderson-Sellers A, Dickinson RE, Durbidge TB, Kennedy PJ, McGuffie K, Pitman AJ (1993) Tropical deforestation: modeling local to regional scale climate change. J Geophys Res 98:7289–7315

    Article  Google Scholar 

  • Kalnay E et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470.

    Article  Google Scholar 

  • Khanna J, Medvigy D (2014) Surface roughness variations control the regional atmospheric response to contemporary deforestation in Rondonia, Brazil. J Geophys Res - Atmos 119:13067–13078. doi:10.1002/2014JD022278

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rash PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR/TN-420 +

  • Kirby KR, Laurance WF, Albernaz AK, Schroth G, Fearnside PM, Scott B, Venticinque EM, Costa C (2006) The future of deforestation in the Brazilian Amazon. Futures 38(4):432–453. doi:10.1016/j.futures.2005.07.011

    Article  Google Scholar 

  • Lean J, Rowntree PR (1993) A GCM simulation of the impact of Amazonian deforestation on climate using an improved canopy representation. QJR Meteorol Soc 119:509–530. doi:10.1002/qj.49711951109

    Article  Google Scholar 

  • Lejeune Q, Davin EL, Guillod BP, Seneviratne SI (2014) Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim Dyn. doi:10.1007/s00382-014-2203-8

    Google Scholar 

  • Lenters JD, Cook KH (1997) On the origin of the Bolivian high and related circulation features of the South American climate. J Atmos Sci 54:656–678

    Article  Google Scholar 

  • Liebmann B, Vera CS, Carvalho LMV, Camilloni IA, Hoerling MP, Allured D, Barros VR, Báez J, Bidegain M (2004) An observed trend in central south American precipitation. J Clim 17:4357–4367. doi:10.1175/3205.1

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu J, Yang L, Merchant JW (2000) Development of a Global Land Cover Characteristics database and IGBP DISCover from 1-km AVHRR data. Int J Remote Sens 21(6/7):18–51. doi:10.1007/978-3-540-37294-3_3

    Google Scholar 

  • Malhi Y, Timmons RJ, Betts RA, Killeen TK, Li W, Nobre CA (2008) Climate change: deforestation, and the fate of the Amazon. Science 319(5860):169–172. doi:10.1126/science.1146961

    Article  Google Scholar 

  • Manzi AO, Planton S (1996) A simulation of Amazonian deforestation using a GCM calibrated with ABRACOS and ARME data. In: Gash JHC, Nobre C, Roberts JM, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chicester, pp. 505–529

    Google Scholar 

  • Marengo JA, Soares W, Saulo C, Nicolini M (2004) Climatology of the LLJ east of the Andes as derived from the NCEP reanalyses. J Clim 17:2261–2280

  • Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PL, Cavalcanti IFA, Carvalho LMV, Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogues-Paegle J, Zipser E, Seth A, Alves LM (2012) Recent developments on the South American monsoon system. Int J Climatol 32:1–21. doi:10.1002/joc.2254

    Article  Google Scholar 

  • Medvigy D, Walko RL, Avissar R (2011) Effects of deforestation on spatiotemporal distributions of precipitation in South America. J Clim 24:2147–2163. doi:10.1175/2010JCLI3882.1

    Article  Google Scholar 

  • Medvigy D, Walko RL, Otte MJ, Avissar R (2013) Simulated changes in northwest US climate in response to Amazon deforestation. J Clim 26:9115–9136. doi:10.1175/JCLI-D-12-00775.1

    Article  Google Scholar 

  • Nobre CA, Sellers PJ, Shukla J (1991) Amazonian deforestation and regional climate change. J Clim 4:957–988

    Article  Google Scholar 

  • Pal JS Coauthors (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409

  • Pielke RE Coauthors (1992) A comprehensive meteorological modeling system—RAMS. Meteorog Atmos Phys 49:69–91

  • Ramos da Silva R, Werth D, Avissar R (2008) Regional impacts of future land-cover changes on the Amazon basin wet-season climate. J Clim 21:1153–1170. doi:10.1175/2007JCLI1304.1

    Article  Google Scholar 

  • Reboita MS, Gan MA, da Rocha RP, Ambrizzi T (2010) Regimes de precipitação na américa do Sul: uma revisão bibliográfica. Revista Brasileira de Meteorologia 25:185–204

    Article  Google Scholar 

  • Reboita MS, Fernandez JPR, Llopart MP, da Rocha RP, Pampuch LA, Cruz FT (2014) Assessment of RegCM4.3 over the CORDEX South America domain: sensitivity analysis for physical parameterization schemes. Clim Res 60:215–234. doi:10.3354/cr01239

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Roy BS, Avissar R (2002) Impact of land use/land cover change on regional hydrometeorology in Amazonia. J Geophys Res 107(D20). doi:10.1029/2000JD000266

  • Sampaio G, Nobre N, Costa MH, Satyamurty P, Soares-Filho BS, Cardoso M (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett vol. 34,no.17, article L17709, 2007

  • Silva MES, Franchito SH, Rao VB (2006) Effects of Amazonian deforestation on climate: a numerical experiment with a coupled biosphere-atmosphere model with soil hydrology. Theor Appl Climatol, Austria 85:1–18. doi:10.1007/s00704-005-0177-5

    Article  Google Scholar 

  • Snyder PK (2010) The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact 14:1–34. doi:10.1175/2010EI 280.1

    Article  Google Scholar 

  • Soares-Filho BS Coauthors (2006) Modelling conservation in the Amazon basin. Nature 440:520–523. doi:10.1038/nature04389

  • Varejão-Silva MA, Franchito SH, Rao VB (1998) A Coupled Biosphere-Atmosphere Climate model suitable for studies in climatic change due to land surface alterations. J Clim Estados Unidos, 11, 7: 1749-1767. doi: 10.1175/1520-0442(1998)011<1749:ACBACM>2.0.CO;2

  • Voldoire AJ, Royer JF (2004) Tropical deforestation and climate variability. Clim Dyn 22:857–874. doi:10.1007/s00382-004-0423-z

    Article  Google Scholar 

  • Walker R, Moore NJ, Arima E, Perz S, Simmons C, Caldas M, Vergara D, Bohrer C (2009) Protecting the Amazon with protected areas. Proc Natl Acad Sci 106:10582–10586. doi:10.1073/pnas.0806059106

    Article  Google Scholar 

  • Walko RL, Avissar R (2008) The Ocean–Land–Atmosphere Model (OLAM): formulation and tests of the nonhydrostatic dynamic core. Mon Weather Rev, 136, 4045–4062

    Article  Google Scholar 

  • Werth D, Avissar R (2002) The local and global effects of Amazon deforestation. J Geophys Res 107:8087. doi:10.1029/2001JD000717

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences: an introduction, 2nd edn. Academic Press, San Diego, p. 627

    Google Scholar 

  • Yanagi SNM (2006) Albedo of an Amazon tropical rainforest: field measurements, remote sensing, modeling, and its influence on the regional climate. PhD Thesis,Federal University of Viçosa, Brazil (available at www.tede.ufv.br)

  • Zhang Y, Fu R, Yu H, Dickinson RE, Juarez RN, Chin M, Wang H (2008) A regional climate model study of how biomass burning aerosol impacts land−atmosphere interactions over the Amazon. J Geophys Res 113: D14S15. doi: 10.1029/2007 JD 009449

Download references

Acknowledgements

The authors wish to thank NOAA’s ESRL in Boulder, CO, for providing reanalysis data (http://www.esrl.noaa.gov/psd) and the Global Land Cover Characterization (http://edc2.usgs.gov/glcc/sadoc20.php# vers2) for the land use data. The first author acknowledges the support from Sao Paulo Research Foundation (FAPESP) under Process N. 2007/07834-3. RP; da Rocha acknowledges CNPq (307202/2011-9 and 307547/2014-0) and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Elisa Siqueira Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M.E.S., Pereira, G. & da Rocha, R.P. Local and remote climatic impacts due to land use degradation in the Amazon “Arc of Deforestation”. Theor Appl Climatol 125, 609–623 (2016). https://doi.org/10.1007/s00704-015-1516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1516-9

Keywords

Navigation