Skip to main content
Log in

Indian summer monsoon simulations with CFSv2: a microphysics perspective

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The present study explores the impact of two different microphysical parameterization schemes (i.e. Zhao and Carr, Mon Wea Rev 125:1931-1953, 1997:called as ZC; Ferrier, Amer Meteor Soc 280-283, 2002: called as BF) of National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) on Indian summer monsoon (ISM). Critical relative humidity (RHcrit) plays a crucial role for the realistic cloud formation in a general circulation model (GCM). Hence, impact of RHcrit along with microphysical scheme on ISM is evaluated in the study. Model performance is evaluated in terms of simulation of rainfall, lower and upper tropospheric circulations, cloud fraction, cloud condensate and outgoing longwave radiation (OLR). Climatological mean features of rainfall are better represented by all the sensitivity experiments. Overall, ZC schemes show relatively better rainfall patterns as compared to BF schemes. BF schemes along with 95 % RHcrit (called as BF95) show excess precipitable water over Indian Ocean basin region, which seems to be unrealistic. Lower and upper tropospheric features are well simulated in all the sensitivity experiments; however, upper tropospheric wind patterns are underestimated as compared to observation. Spatial pattern and vertical profile of cloud condensate is relatively better represented by ZC schemes as compared to BF schemes. Relatively more (less) cloud condensate at upper level has lead to relatively better (low) high cloud fraction in ZC (BF) simulation. It is seen that OLR in ZC simulation have great proximity with observation. ZC (BF) simulations depict low (high) OLR which indicates stronger (weaker) convection during ISM period. It implies strong (weak) convection having stronger (weaker) updrafts in ZC (BF). Relatively more (less) cloud condensate at upper level of ZC (BF) may produce strong (weak) latent heating which may lead to relatively strong (weak) convection during ISM. The interaction among microphysics, thermodynamics, and dynamics works in tandem through a closed feedback loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydro Meteorol 4:1147–1167

    Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus ensemble with the large-scale environment, part 1. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Baker MB (1997) Cloud microphysics and climate. Science 276:1072–1078

    Article  Google Scholar 

  • Chaudhari HS, Shinde MA, Oh JH (2010) Understanding of anomalous Indian summer monsoon rainfall of 2002 and 1994. Quat Int 213:20–32

    Article  Google Scholar 

  • Chaudhari HS, Pokhrel S, Mohanty S, Saha SK (2013) Seasonal prediction of Indian summer monsoon in NCEP coupled and uncoupled model. Theor Appl Climatol 114:459–477

    Article  Google Scholar 

  • Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transf 91:233–244

  • De S, Hazra A, Chaudhari HS (2015) Does the modification in “critical relative humidity” of NCEP CFSv2 dictate Indian mean summer monsoon forecast?: Evaluation through thermodynamical and dynamical aspects. Clim Dyn. doi:10.1007/s00382-015-2640-z

  • Delsole T, Shukla J (2010) Model fidelity versus skill in seasonal forecasting. J Clim 23:4794–4806

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 1089(D22):8851. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Ferrier BS, Lin Y, Black T, Rogers E, DiMego G (2002) Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280-283pp

  • Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4, GFDL Ocean Group Technical Report, 5: 337 pp

  • Hazra A, Chaudhari HS, Dhakate A (2015a) Evaluation of cloud properties in the NCEP CFSv2 model and its linkage with Indian summer monsoon. Theor Appl Climatol. doi:10.1007/s00704-015-1404-3

    Google Scholar 

  • Hazra A, Chaudhari HS, Rao SA, Goswami BN, Dhakate A, Pokhrel S, Saha SK (2015b) Impact of revised cloud microphysical scheme in CFSv2 on the simulation of the Indian summer monsoon. Int J Climatol. doi:10.1002/joc.4320

    Google Scholar 

  • Hazra A, Chaudhari HS, Pokhrel S (2014) Improvement in convective and stratiform rain fractions over the Indian region with introduction of new ice nucleation parameterization in ECHAM5. Theor Appl Clim. doi:10.1007/s00704-014-1163-6

    Google Scholar 

  • Hazra A, Goswami BN, Chen JP (2013a) Role of interactions between aerosol radiative effect, dynamics, and cloud microphysics on transitions of monsoon intraseasonal oscillations. J Atmos Sci 70:2073–2087

    Article  Google Scholar 

  • Hazra A, Taraphdar S, Halder M, Pokhrel S, Chaudhari HS, Salunke K, Mukhopadhyay P, Rao SA (2013b) Indian summer monsoon drought 2009: role of aerosol and cloud microphysics. Atmos Sci Lett 14:181–186

    Article  Google Scholar 

  • Hong S-Y, Pan H-L (1998) Convective trigger function for a mass-flux cumulus parameterization scheme. Mon Weather Rev 126:2599–2620

    Article  Google Scholar 

  • Hu Y, Winker D, Vaughan M, Lin B, Omar A, Trepte C, Flittner D, Yang P, Nasiri SL, Baum B, Holz R, Sun W, Liu Z, Wang Z, Young, Stamnes K, Huang J, Kuehn R (2009) CALIPSO/CALIOP cloud phase discrimination algorithms. J Atmos Ocean Technol 26:2293–2309

    Article  Google Scholar 

  • Iacono MJ, Mlawer EJ, Clough SA, Morcrette J-J (2000) Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR Community Climate Model, CCM3. J Geophys Res 105:14873–14890

    Article  Google Scholar 

  • Joseph PV, Sijikumar S (2004) Intraseasonal variability of the low level jetstream of Asian summer monsoon. J Clim 17:1449–1458

    Article  Google Scholar 

  • Joseph PV, Sooraj KP, Babu CA, Sabin TP (2005). A cold pool in the Bay of Bengal and its interaction with the active-break cycle of the monsoon, CLIVAR Exchanges 34, 10(3), 10 – 12pp

  • Kanamitsu M, Ebisuzaki W, Woolen J, Yang SK, Hnilo J, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kim YJ, Arakawa A (1995) Improvement of orographic gravity wave parameterization using a meso-scale gravity wave model. J Atmos Sci 52:1875–1902

    Article  Google Scholar 

  • Kripalani RH, Kulkarni A, Sabade SS, Khandekar ML (2003) Indian monsoon variability in a global warming scenario. Nat Hazards 29:189–206

    Article  Google Scholar 

  • Kripalani RH, Singh SV, Arkin PA (1991) Large-scale features of rainfall and OLR over the Indian and adjoining regions. Beitr Phys Atmosph 64:159–168, Contribution to Atmospheric Physics

    Google Scholar 

  • Krishnamurti TN, Bedi HS, Subramaniam M (1989) The summer monsoon of 1987. J Clim 2:321–340

    Article  Google Scholar 

  • Kulkarni A, Kripalani RH, Sabade SS (2010) Examining Indian monsoon variability in coupled climate model simulations and projections. IITM Res Rep RR-125:1–34

    Google Scholar 

  • Kumar S, Hazra A, Goswami BN (2014) Role of interaction between dynamics, thermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar coast and the Western Ghats. Clim Dyn 43:911–924

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Lott F, Miller MJ (1997) A new subgrid scale orographic drag parameterization: its performance and testing. Quart J R Meteorol Soc 123:101–127

    Article  Google Scholar 

  • Misra V, Pantina P, Chan SC, DiNapoli S (2012) A comparative study of the Indian summer monsoon hydroclimate and its variations in three reanalyses. Clim Dyn 39:1149–1168

    Article  Google Scholar 

  • Moorthi S, Pan HL, Caplan P (2001) NCEP operational MRF/AVN global analysis/forecast system. NWS Technical Procedures Bulletin 484: 14pp. Available at: http://www.nws.noaa.gov

  • Moorthi S, Sun R, Xia H, Mechoso CR (2010) Low-cloud simulation in the Southeast Pacific in the NCEP GFS: role of vertical mixing and shallow convection. NCEP Office Note 463, 28 pp. Available online at: http://www.emc.ncep.noaa.gov/officenotes/FullTOC.html#2000

  • Naidu CV, Krishna KM, Rao SR, Kumar OSRUB, Durgalakshmi K, Ramakrishna SSVS (2011) Variations of Indian summer monsoon rainfall induce the weakening of easterly jet stream in the warming environment? Glob Planet Chang 33:1017–1032

    Google Scholar 

  • Nakagawa M, Pan HL, Sun R, Moorthi S, Ferrier B (2011) Implementation of the Ferrier cloud microphysics scheme in the NCEP GFS. 24th Conference on Weather and Forecasting/20th Conference on Numerical Weather Prediction, Seattle, WA

  • Pokhrel S, Rahaman H, Parekh A, Saha SK, Dhakate A, Chaudhari HS, Gairola RM (2012) Evaporation-precipitation variability over Indian Ocean and its assessment in NCEP Climate Forecast System (CFSv2). Clim Dyn 39:2585–2608

    Article  Google Scholar 

  • Rajeevan M, Rohini P, Niranjan Kumar K, Srinivasan J, Unnikrishnan CK (2013) A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim Dyn 40:637–650

    Article  Google Scholar 

  • Rao RR, Girish Kumar MS, Ravichandran M, Samala BK (2006) Observed mini-cold pool off the southern tip of India and its intrusion into the south central Bay of Bengal during summer monsoon season. L06607, doi:10.1029/2005GL025382

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA's modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang H-MH, Sela J, Iredell M, Treadon R, Kleist D, Delst PV, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Dool HVD, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS (2013) Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 free run. Clim Dyn 41:1801–1815

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014a) The NCEP Climate Forecast System Version 2. J Clim 27:2185–2208

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, SabeerAli CT, Salunke K, Hazra A, Mahapatra S, Rao AS (2014b) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system (CFSv2) free run. Int J Climatol 34:1628–1641

    Article  Google Scholar 

  • Sanderson BM, Shell KM, Ingram W (2010) Climate feedbacks determined using radiative kernels in a multi-thousand member ensemble of AOGCMs. Clim Dyn 35:1219–1236

    Article  Google Scholar 

  • Slingo A, Wilderspin RC, Brentnall SJ (1987) Simulation of the diurnal cycle of outgoing longwave radiation with an atmospheric GCM. Mon Weather Rev 115:1451–1457

    Article  Google Scholar 

  • Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K, Wang Z, Illingworth AJ, O'Connor EJ, Rossow WB, Durden SL, Miller SD, Austin RT, Benedetti A, Mitrescu C (2002) The Cloudsat mission and A-train: a new dimension of space based observations of clouds and precipitation. Bull Am Meteorol Soc 83:1771–1790

    Article  Google Scholar 

  • Sun R, Moorthi S, Mechoso CR (2010) Simulaton of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing. Atmos Chem Phys 10:12261–12272

    Article  Google Scholar 

  • Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud studies with mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1757

    Article  Google Scholar 

  • Tao W-K, Simpson J, Lang S, McCumber M, Adler R, Penc R (1990) An algorithm to estimate the heat budget from vertical hydrometeor profile. J Appl Meteorol 29:1232–1244

    Article  Google Scholar 

  • Thorsen TJ, Fu Q, Comstock J (2011) Comparison of the CALIPSO satellite and ground‐based observations of cirrus clouds at the ARM TWP sites. J Geophys Res 116:D21203. doi:10.1029/2011JD015970

    Article  Google Scholar 

  • Thompson A, Stefanova L, Krishnamurti TN (2008) Baroclinic splitting of jets. Meteorol Atmos Phys 100:257–274

    Article  Google Scholar 

  • Trenberth KE, Guillemot CJ (1998) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Clim Dyn 14:213–231

    Article  Google Scholar 

  • Walcek CJ (1994) Cloud cover and its relationship to relative humidity during spring time midlatitude cyclone. Mon Weather Rev 122:1021–1035

    Article  Google Scholar 

  • Waliser DE, Li J-L, Woods CP, Austin RT, Bacmeister J, Chern J, Del Genio A, Jiang JH, Kuang Z, Meng H, Minnis P, Platnick S, Rossow WB, Stephens GL, Sun-Mack S, Tao W-K, Tompkins AM, Vane DG, Walker C, Wu D (2009) Cloud ice: a climate model challenge with signs and expectations of progress. J Geophys Res 114: 10.1029/2008JD010015

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability and the prospectus for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Winker DM, Vaughan MA, Omar A, Hu Y, Powell KA, Liu Z, Hunt WH, Young SH (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Ocean Technol 26:2310–2323

    Article  Google Scholar 

  • Wu X, Moorthi KS, Okomoto K, Pan HL (2005) Sea ice impacts on GFS forecasts at high latitudes. In: Eighth conference on polar meteorology and oceanography, American Meteorological Society, San Diego, CA

  • Xu KM, Randall DA (1996) A semiempirical cloudiness parameterization for use in climate models. J Atmos Sci 53:3084–3102

    Article  Google Scholar 

  • Zhao QY, Carr FH (1997) A prognostic cloud scheme for operational NWP models. Mon Weather Rev 125:1931–1953

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from Dr. Rajeevan, Director, IITM, and Dr. Suryachandra Rao, Chief Program Scientist, IITM, for pursuing the research. Ferret and NCL Freeware are used extensively in plotting. IBM High Power Computing (HPC) System, Prithvi facility is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemantkumar S. Chaudhari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, H.S., Hazra, A., Saha, S.K. et al. Indian summer monsoon simulations with CFSv2: a microphysics perspective. Theor Appl Climatol 125, 253–269 (2016). https://doi.org/10.1007/s00704-015-1515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1515-x

Keywords

Navigation