Skip to main content

Advertisement

Log in

Variability in dryness and wetness in central Finland and the role of teleconnection patterns

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Interannual variability in meteorological dryness and wetness in central Finland during the period 1959–2009 was analysed using Standardized Precipitation Index (SPI) on three timescales (annual, seasonal and monthly). For different time steps (12, 3 and 1 months) of SPI values (SPI12, SPI3 and SPI1), trends based on the Mann-Kendall non-parametric test and the most significant relationships with a number of climate teleconnection patterns based on Spearman correlation coefficient (rho) were determined. Analysis of the SPI values on different timescales showed a general decreasing trend in dryness and an increasing trend in wetness; only August showed an increasing trend in dryness. The longest wet period observed was 5 years (between 1988 and 1992), while the longest dry period was 4 years (in the mid-1960s). Wet conditions were more frequent than dry conditions and mainly occurred at extreme or moderate level. Typically, the extremely wet level was more frequent than the extremely dry level. The dry and wet conditions were negatively correlated with the East Atlantic/West Russia and Scandinavia teleconnection patterns and positively correlated with the North Atlantic Oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akinremi OO, McGinn SM, Cutforth HW (1999) Precipitation trends on the Canadian prairies. J Clim 12:2996–3003

    Article  Google Scholar 

  • Alcamo J, Floerke M, Maerker M (2007) Future long-term changes in global water resources driven by socioeconomic and climatic changes. Hydrolog Sci J 52:247–275

    Article  Google Scholar 

  • Atlas of Finland-Climate (1987) Folio 131. National board of survey and geographical society of Finland. Helsinki

  • BACC (2008) Assessment of climate change in the Baltic Sea basin. Springer Verlag Berlin-Heidelberg, ISBN 978-3-540-72785, 473 pp

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309

    Article  Google Scholar 

  • Barnston GA, Livezey RE (1987) Classification, seasonality and persistence of low frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Bartolini E, Claps P, D’Odorico P (2009) Interannul variability of winter precipitation in the European Alps: relations with the North Atlantic Oscillation. Hydrol Earth Syst Sci 13:17–25

    Article  Google Scholar 

  • Boer GJ, Flato G, Ramdsen D (2000) A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate to the twenty-first century. Clim Dynam 16:427–450

    Article  Google Scholar 

  • Bordi I, Sutera A (2001) Fifty years of precipitation: some spatially remote teleconnections. Water Resour Manag 15:247–280

    Article  Google Scholar 

  • Bordi I, Sutera A (2012) Drought assessment in a changing climate. Climate variability—some aspects, challenges and prospects. A. Hannachi (Ed.), 192 pp., In Tech, 123–140

  • Bordi I, Fraedrich K, Sutera A (2009) Observed drought and wetness trends in Europe: an update. Hydrol Earth Syst Sci 13:1519–1530

    Article  Google Scholar 

  • Bueh C, Nakamura H (2007) Scandinavian pattern and its climatic impact. Q J Roy Meteor Soc 133:2117–2131

    Article  Google Scholar 

  • Busuioc A, Chen D, Hellström C (2001a) Temporal and spatial variability of precipitation in Sweden and its link with the large scale atmospheric circulation. Tellus A 53:348–367

    Article  Google Scholar 

  • Busuioc A, Chen D, Hellström C (2001b) Performance of statistical downscaling models in GCM validation and regional climate change estimates: application for Swedish precipitation. Int J Climatol 21:557–578

    Article  Google Scholar 

  • Castro M, Gallardo C, Jylhä K, Tuomenvirta H (2007) The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of regional climate models. Clim Change 81:329–341

    Article  Google Scholar 

  • Chang WYB (1997) ENSO-extreme climate events and their impacts on Asian deltas. J Am Water Resour Assoc 33(3):605–614

    Article  Google Scholar 

  • Chaouche K, Neppel L, Dieulin C, Pujol N, Ladouche B, Martin E, Salas D, Caballero Y (2010) Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Compt Rendus Geosci 342:234–243

    Article  Google Scholar 

  • Chen D, Chen HW (2013) Using the Köppen classification to quantify climate variation and change: an example for 1901-2010. Environ Dev 6:69–79

    Article  Google Scholar 

  • Chen D, Hellström C (1999) The influence of the North Atlantic Oscillation on the regional temperature variability in Sweden: spatial and temporal variations. Tellus A 51:505–516

    Article  Google Scholar 

  • Chen D, Gao G, Xu C-Y, Gao J, Ren G (2005) Comparison of Thornthwaite method and Pan data with the standard Penman-Monteith estimates of potential evapotranspiration for China. Clim Res 28:123–132

    Article  Google Scholar 

  • Chen HW, Zhang Q, Körnich H, Chen D (2013) A robust mode of climate variability in the arctic: the Barents oscillation. Geophys Res Lett 40(11):2856–2861

    Article  Google Scholar 

  • Chiew FHA, Piechota TC, Dracup JA, McMahon TA (1998) El Niño Southern Oscillation and Australian rainfall, streamflow and drought—links and potential for forecasting. J Hydrol 204(1–4):138–149

    Article  Google Scholar 

  • CPC (2011) Northern hemisphere teleconnection patterns. (http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml)

  • Dai A, Fung IY, Del Genio AD (1997) Surface observed global land precipitation variations during 1900–1988. J Clim 10:2943–2962

    Article  Google Scholar 

  • Dayan U, Lamb D (2005) Global and synoptic-scale weather patterns controlling wet atmospheric deposition over central Europe. Atmos Environ 39:521–533

    Article  Google Scholar 

  • Di Lena B, Vergni L, Antenucci F, Todisco F, Mannocchi F (2014) Analysis of drought in the region of Abruzzo (Central Italy) by the Standardized Precipitation Index. Theor Appl Climatol 115:41–52

    Article  Google Scholar 

  • Dore MHI (2005) Climate change and changes in global precipitation patterns: what do we know? Environ Int 31:1167–1181

    Article  Google Scholar 

  • Douglas EA, Vogel RM, Kroll CN (2000) Trends in floods and low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105

    Article  Google Scholar 

  • Dracup JA, Lee KS, Paulson EG (1980) On the statistical characteristics of drought events. Water Resour Res 16(2):289–296

    Article  Google Scholar 

  • Drápela K, Drápelova I (2011) Application of Mann-Kendall test and the Sen’s slope estimates for trend detection in deposition data from Bily Křiž (Beskydy Mts., the Czech Republic) 1997-2010. Beskydy 4(2):133–146

    Google Scholar 

  • Drebs A, Nordlund A, Karlsson P, Helminen J, Rissanen P (2002) Tilastoja Suomen ilmastosta 1971–2000—climatological statistics of Finland 1971–2000. Ilmastotilastoja Suomesta 2002:1, Finnish Meteorological Institute. Helsinki

  • Gathara ST, Gringof LG, Marsha E, Sinha Ray K, Spasov P (2006) Impacts of desertification and drought and of other extreme meteorological events. CAgM Report No. 101, WMO/TD No. 1343, Geneva, Switzerland, 85 pp

  • Glantz MH, Katz RW, Nicholls N (eds.) (2009) Teleconnections linking worldwide climate anomalies: scientific basis and societal impact. Cambridge University Press, New York

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35:311–322

    Article  Google Scholar 

  • Hayes MJ, Svoboda MD, Wilhite DA et al (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80(3):429–438

    Article  Google Scholar 

  • Hayes MJ, Svoboda MD, Wall N, Widhalm M (2011) The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bull Am Meteorol Soc 92:485–488

    Article  Google Scholar 

  • Heim R (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83:1149–1165

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Studies in Environmental Science (Amsterdam), 522p

  • Hoerling M, Kumar A (2003) The perfect ocean for drought. Science 299:691–694

    Article  Google Scholar 

  • Hurrell JW, Van Loon H (1997) Decadal variation in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326

    Article  Google Scholar 

  • IPCC (2007a) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • IPCC (2007b) Climate change 2007: Impacts, adaptation and vulnerability. Working Group II Contribution to the Intergovernmental Panel on Climate Change—Fourth assessment report—Summary for policymakers. Cambridge University Press, Cambridge, United Kingdom and New York, USA. 23 pp

  • Irannezhad M, Marttila H, Kløve B (2014) Long-term variations and trends in precipitation in Finland. Int J Climatol 34(10):3139–3153. doi:10.1002/joc.3902

    Article  Google Scholar 

  • Jaagus J (2006) Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theor Appl Climatol 83:77–88

    Article  Google Scholar 

  • Jaagus J (2009) Regionalization of the precipitation pattern in the Baltic Sea drainage basin and its dependence on large-scale atmospheric circulation. Boreal Environ Res 14:31–44

    Google Scholar 

  • Jhajharia D, Yadav BK, Maske S, Chattopadhyay S, Kar AK (2012) Identification of trends in rainfall, rainy days and 24 h maximum rainfall over subtropical Assam in Northeast India. Compt Rendus Geosci 344:1–13

    Article  Google Scholar 

  • Käyhkö J (2004) Muuttuuko Pohjolan ilmasto? (Fennoscandian climate in change?) Publications of Geography Department of the University of Turku 168. 19–35. Turku. (in Finnish with English abstract)

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kjellström E, Ruosteenoja K (2007) Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models. Clim Change 81(S1):281–291

    Article  Google Scholar 

  • Korhonen J, Kuusisto E (2010) Long-term changes in the discharge regime in Finland. Hydrol Res 41(3–4):253–268

    Article  Google Scholar 

  • Kossida M, Koutiva I, Makropoulos C, Monokrousou K, Mimikou M, Fons-Esteve J, Iglesias A (2009) Water scarcity and drought: towards a European Water Scarcity and Drought Network (WSDN). European Environmental Agency, 107pp

  • Krichak SO, Alpert P (2005) Decadal trends in the East Atlantic-West Russia pattern and Mediterranean precipitation. Int J Climatol 25:183–192

    Article  Google Scholar 

  • Kundzewicz ZW (2009) Adaptation to floods and droughts in the Baltic Sea basin under climate change. Boreal Environ Res 14:193–203

    Google Scholar 

  • Lehner B, Döll P, Alcamo J, Henrichs H, Kaspar F (2005) Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated assessment. Clim Change 75:273–299

    Article  Google Scholar 

  • Lehtonen H, Kujala S (2007) Climate change impacts on crop risks and agricultural production in Finland. The 101st EAAE Seminar: Management of Climate Risks in Agriculture, Berlin, Germany, July 5–6, 2007

  • Lloyd-Hughes B, Saunders M (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kliest J (1993) The relationship of drought frequency and duration to time scales. In: In Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, 17–22 January, Anaheim, USA., pp 179–184

    Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216

    Article  Google Scholar 

  • Mitchell JFB et al (2001) Detection of climate change and attribution of causes. In Houghton JT et al. (Eds.). Climate Change 2001: The Scientific Basis. Cambridge University Press: UK

  • Moron V, Vautard R, Ghil M (1998) Trends, interdecadal and interannual oscillation in global sea-surface temperatures. Clim Dynam 14:545–569

    Article  Google Scholar 

  • MTT (2007) Finnish agriculture and rural industries 2007. MTT Agrifood Research Finland, Economic Research, Publications 107a, 96 pp

  • Nicholls N, Alexander L (2007) Has the climate become more variable or extreme? Progress 1992-2006. Prog Phys Geogr 31(1):77–87

    Article  Google Scholar 

  • Okkonen J, Kløve B (2010) A conceptual and statistical approach for the analysis of climate impact on ground water table fluctuation patterns in cold conditions. J Hydrol 388:1–12

    Article  Google Scholar 

  • Olin M, Ruuhijärvi J. (eds.) (2005) Kalakuolemienvaikutusten seurantatutkimus 2003-2004. (Monitoring the effects of fish kills in 2003-2004). Kala- ja riistaraportteja 361: 75 pp. ISBN 951-776-504-5 (in Finnish)

  • Özger M, Mishra A, Singh VP (2009) Low frequency variability in drought events associated with climate indices. J of Hydro 364:152–162

    Article  Google Scholar 

  • Paulo AA, Rosa RD, Pereira LS (2012) Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat Hazards Earth Syst Sci 12:1481–1491

    Article  Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Laurila IP (2009) Cereal yield trends in northern European conditions: changes in yield potential and its realization. Field Crop Res 110(1):85–90

    Article  Google Scholar 

  • Pirinen P, Simola H, Aalto J, Kaukoranta J-P, Karlsson P, Ruuhela R (2012) Tilastoja Suomen Ilmastosta 1981-2010 [Climatological statistics of Finland 1981-2010]. Reports 2012:1, Finnish Meteorological Institute, Helsinki [in Finnish and English]

  • Rimkus E, Valiukas D, Kažys J, Gečaitė I, Stonevičius E (2012) Dryness dynamics of the Baltic Sea region. Baltica 25(2):129–142

    Article  Google Scholar 

  • Saarinen T, Kløve B (2012) Past and future seasonal variation in pH and metal concentrations in runoff from river basins on acid sulphate soils in Western Finland. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(11):1614–1625

    Article  Google Scholar 

  • Saarinen T, Vuori K-M, Alasaarela E, Kløve B (2010) Long-term trends and variation of acidity, CODMn and colour in coastal rivers of western Finland in relation to climate and hydrology. Sci Total Environ 408:5019–5027

    Article  Google Scholar 

  • Saarinen T, Mohammadighavam S, Marttila H, Kløve B (2013) Impact of peatland forestry on runoff water quality in areas with sulphide-bearing sediments; how to prevent acid surges. For Ecol Manage 293:17–28

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. Int J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Shabbar A, Skinner W (2004) Summer drought patterns in Canada and the relationship to global sea surface temperatures. J Clim 17:2866–2880

    Article  Google Scholar 

  • Sienz F, Bordi I, Fraedrich K, Scheneiderit A (2007) Extreme dry and wet events in Iceland: observations, simulations and scenarios. Meteorologische Zeitschrift Band 16 Heft 1:9–16

    Article  Google Scholar 

  • Silander J, Järvinen EA. (eds.) (2004) Vuosien 2002-2003 poikkeuksellisen kuivuuden vaikutukset [Effects of severe drought 2002-2003]. The Finnish Environment 731, Finnish Environmental Institute, Helsinki. [In Finnish with English abstract]

  • Solantie RK, Joukola MPJ (2001) Evapotranspiration 1961-1990 in Finland as function of meteorological and land-type factors. Boreal Environ Res 6:261–273

    Google Scholar 

  • Spinoni J, Antofie T, Barbosa P, Bihari Z, Lakatos SS, Szentimrey T, Vogt J (2013) An overview of drought events in the Carpathian Region in 1961-2010. Adv Sci Res 10:21–32

    Article  Google Scholar 

  • Tallaksen LM, Stahl K, Wong G (2011) Space-time characteristics of large-scale droughts in Europe derived from steamflow observations and WATCH multi-model simulations. WATCH Project Technical Report No. 48. 11 p

  • Tammelin B, Forsius J, Jylhä K, Järvinen P, Koskela J, Tuomenvirta H, Turunen MA, Vehviläinen B, Venäläinen A (2002) Ilmastonmuutoksen vaikutuksia energiantuotantoon ja lämmitysenergian tarpeeseen. (English abstract: Effect of climate change on energy production and heating power demand). Ilmatieteen laitos, Raportteja, Finnish Meteorological Institute Reports: Finland

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part І: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thorsteinsson T, Björnsson H (2011) Climate change and energy systems: impacts, risks and adaptation in the Nordic and Baltic Countries, Nordic Council of Ministers, 226 p

  • Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int J Climatol 30:2247–2256

    Article  Google Scholar 

  • Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resour Manag 21:821–833

    Article  Google Scholar 

  • Tuomenvirta H, Heino R (1996) Climatic changes in Finland—recent findings. Geophysica 32(1–2):61–75

    Google Scholar 

  • UNISDR (2009) Drought risk reduction framework and practices: contributing to the implementation of the Hyogo framework for action. United Nations Secretariat of the International Strategy for Disaster Reduction (UNISDR), Geneva, Switzerland, 213 p

  • Uvo CB (2003) Analysis and regionalization of northern European winter precipitation based on its relationship with the North Atlantic Oscillation. Int J Climatol 19:253–269

    Google Scholar 

  • Vicente-Serrano SM, Beguerí S, López-Moreno JI (2010a) A multiscalar drought index sensitive to global warming: Standardized Precipitation Evapotranspiration Index. J Clim 23:1696–1718

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguerí S, López-Moreno JI, Angulo M, El Kenawy A (2010b) A new global 0.5° gridded dataset (1901-2006) of a multiscalar drought index: comparison with current drought index datasets baed on the Plamer Drought Severity Index. J Hydrometeorol 11:1033–1043

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguerí S, Lorenzo-Lacruz J, Camarero JJ, López-Moreno JI, Azorin-Molina C, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2012) Performance for drought indices for ecological, agricultural and hydrological applications. Earth Interactions 16(10):1–27

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer Drought Severity Index. J Clim 17:2335–2351

    Article  Google Scholar 

  • Wibig J (1999) Precipitation in Europe in relation to circulation patterns at the 500 hPa level. Int J Climatol 19:253–269

    Article  Google Scholar 

  • Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10(3):111–120

    Article  Google Scholar 

  • WMO (2009) Experts agree on a universal drought index to cope with climate risk. WMO Press Release No. 872, Geneva, 15 December 2009

  • Yue S, Wang CY (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resoue Manag 18:201–218

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydro Process 16:1807–1829

    Article  Google Scholar 

  • Zahn R (2009) Climate change: beyond the CO2 connection. Nature 460:335–336

    Article  Google Scholar 

  • Zeng N, Haifeng Q, Munoz E, Iacono R (2004) How strong is carbon cycle-climate feedback under global warming? Geophys Res Lett 31, L20203

    Article  Google Scholar 

  • Zolina O, Simmer C, Belyaev K, Gulev SK, Koltermann P (2012) Changes in the duration of European wet and dry spells during the last 60 years. J Clim 26:2022–2047

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the Ministry of Agricultural and Forestry in Finland (TUVE project) and Maa- ja Vesitekniikan Tuki r.y. (MVTT) for funding this research. We also acknowledge the Climate Prediction Centre (CPC) at the National Oceanic and Atmospheric Administration (NOAA) of the USA for making available online the standardized monthly values of the teleconnection patterns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Irannezhad.

Appendix A: Linear regression analysis of monthly SPI and SPEI values in central Finland

Appendix A: Linear regression analysis of monthly SPI and SPEI values in central Finland

Fig. 7
figure 7

Relationship between monthly SPI and SPEI values in central Finland

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irannezhad, M., Torabi Haghighi, A., Chen, D. et al. Variability in dryness and wetness in central Finland and the role of teleconnection patterns. Theor Appl Climatol 122, 471–486 (2015). https://doi.org/10.1007/s00704-014-1305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1305-x

Keywords

Navigation