Skip to main content
Log in

The impact of forest architecture parameterization on GPP simulations

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The presence of a forest strongly affects ecosystem fluxes by acting as a source or sink of mass and energy. The objective of this study was to investigate the influence of the vertical forest heterogeneity parameterization on gross primary production (GPP) simulations. To introduce a heterogeneity effect, a new method for the upscaling of the leaf level GPP is proposed. This upscaling method is based on the relationship between the leaf area index (LAI) and the leaf area density (LAD) profiles and the standard sun/shade leaf separation method. The effect of the crown shape and foliage distribution parameterization on the simulated GPP is confirmed in a comparison study between the proposed method and the standard sun/shade upscaling method. The observed values used in the comparison study are assimilated during the vegetation period on three distinguished forest eddy-covariance (EC) measurement sites chosen for the diversity of their morphological characteristics. The obtained results show (a) the sensitivity of the simulated GPP to the leaf area density profile, (b) the capability of the proposed scaling method to calculate the contribution of the different canopy layers to the entire canopy GPP, and (c) a better agreement with the observations of the simulated GPP with the proposed upscaling method compared with the standard sun/shade method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492. doi:10.1046/j.1365-2486.2003.00629.x

    Article  Google Scholar 

  • Baldocchi DD, Harley PC (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application. Plant Cell Environ 18:1157–1173. doi:10.1111/j.1365-3040.1995.tb00626.x

    Article  Google Scholar 

  • Baldocchi DD, Wilson KB, Gu L (2002) How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest—an assessment with the biophysical model CANOAK. Tree Physiol 22(15–16):1065–1077. doi:10.1093/treephys/22.15-16.1065

    Article  Google Scholar 

  • Ball J, Woodrow I, Berry J (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (ed) Progress in photosynthesis research, vol IV. Martinus Nijhoff Pub, Dordrecht, pp 221–224

    Chapter  Google Scholar 

  • Bodin P, Franklin O (2012) Efficient modeling of sun/shade canopy radiation dynamics explicitly accounting for scattering. Geosci Model Dev 5:535–541. doi:10.5194/gmd-5-535-2012

    Article  Google Scholar 

  • Calvet J-C, Noilhan J, Roujean J-L, Bessemoulin P, Cabelguenne M, Olioso A, Wigneron J-P (1998) An interactive vegetation SVAT model tested against data from six contrasting sites. Agric For Meteorol 92:73–95. doi:10.1016/S0168-1923(98)00091-4

    Article  Google Scholar 

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd ed, Springer, p 286

  • Chen JM, Liu J, Cihlar J, Guolden ML (1999) Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol Model 124:99–119. doi:10.1016/S0304-3800(99)00156-8

    Article  Google Scholar 

  • Chen Q, Baldocchi D, Gong P, Dawson T (2008) Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities. Agric For Meteorol 148(6–7):1005–1020. doi:10.1016/j.agrformet.2008.01.020

    Article  Google Scholar 

  • Chen JM, Mo G, Pisek J, Deng F, Ishozawa M, Chan D (2012) Effects of foliage clumping on global terrestrial gross primary productivity. Glob Biogeochem Cycles 26, GB1019. doi:10.1029/2010GB003996

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136. doi:10.1016/0168-1923(91)90002-8

    Article  Google Scholar 

  • Collatz J, Ribas-Carbo M, Berry J (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–538. doi:10.1071/PP9920519

    Article  Google Scholar 

  • de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20(5):537–557. doi:10.1111/j.1365-3040.1997.00094.x

    Article  Google Scholar 

  • Drewry DT, Kumar P, Long S, Bernacchi C, Liang X-Z, Sivapalan M (2010) Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. J Geophys Res 115, G04022. doi:10.1029/2010JG001340

    Google Scholar 

  • Ellsworth DS, Reich PB (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178. doi:10.1007/BF00317729

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90. doi:10.1007/BF00386231

    Article  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63–92. doi:10.1071/PP9880063

    Article  Google Scholar 

  • Good SP, Rodriguez-Iturbe I, Caylor KK (2013) Analytical expressions of variability in ecosystem structure and function obtained from three dimensional stochastic vegetation modeling. Proc R Soc A 469(215520130003):1471–2946. doi:10.1098/rspa.2013.0003

    Google Scholar 

  • Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK (1997) Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J Geophys Res 102:29,029–29,041. doi:10.1029/97JD02317

    Article  Google Scholar 

  • Hadley JL, O’Keefe J, Munger JW, Hollinger DY, Richardson AD (2009) Phenology of forest-atmosphere carbon exchange for deciduous and coniferous forests in southern and northern New England: Variation with latitude and landscape position. In: Noormets A (ed) Phenology of ecosystem processes: applications in global change research. Springer Verlag, Dordrecht, pp 119–141. doi:10.1007/978-1-4419-0026-5_5

    Chapter  Google Scholar 

  • Harley PC, Baldocchi DD (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parametrization. Plant Cell Environ 18:1146–1156. doi:10.1111/j.1365-3040.1995.tb00625.x

    Article  Google Scholar 

  • Ingestad T, Lund A-B (1986) Theory and techniques for steady state mineral nutrition and growth of plants. Scand J For Res 1:439–453. doi:10.1080/02827588609382436

    Article  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variation in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B 273:593–610

    Article  Google Scholar 

  • Jarvis PG (1995) Scaling processes and problems. Plant Cell Environ 18(10):1079–1089. doi:10.1111/j.1365-3040.1995.tb00620.x

    Article  Google Scholar 

  • Kattge J, Knorr W, Raddatz T, Wirth C (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Chang Biol 15:976–991. doi:10.1111/j.1365-2486.2008.01744.x

    Article  Google Scholar 

  • Kimball JS, Thornton PE, White MA, Running SW (1997) Simulating forest productivity and surface–atmosphere carbon exchange in the BOREAS study region. Tree Physiol 17:589–599. doi:10.1093/treephys/17.8-9.589

    Article  Google Scholar 

  • Kobayashi H, Baldocchi DD, Ryu Y, Chenc Q, Maa S, Osunaa JL, Ustind SL (2012) Modeling energy and carbon fluxes in a heterogeneous oak woodland: a three-dimensional approach. Agric For Meteorol 152:83–100. doi:10.1016/j.agrformet.2011.09.008

    Article  Google Scholar 

  • Kolic B (1978) Forest ecoclimatology (in Serbian). University of Belgrade, Belgrade, p 295

    Google Scholar 

  • Kotchenova SY, Song X, Shabanov NV, Potter CS, Knyazikhin Y, Myneni RB (2004) Lidar remote sensing for modeling gross primary production of deciduous forests. Remote Sens Environ 92:158–172. doi:10.1016/j.rse.2004.05.010

    Article  Google Scholar 

  • Lalic B, Mihailovic DT (2004) An empirical relation describing leaf-area density inside the forest for environmental modeling. J Appl Meteorol 43:641–645. doi:10.1175/1520-0450(2004)043<0641:AERDLD>2.0.CO;2

    Article  Google Scholar 

  • Lalic B, Firanj A, Mihailovic DT, Podrascanin Z (2013) Parameterization of PAR vertical profile within horizontally uniform forest canopies for use in environmental modeling. J Geophys Res Atmos 118:8156–8165. doi:10.1002/jgrd.50626

    Article  Google Scholar 

  • Law BE, Cescatti A, Baldocchi DD (2001) Leaf area distribution and radiative transfer in open-canopy forests: implications for mass and energy exchange. Tree Physiol 21:777–787

    Article  Google Scholar 

  • Leuning R, Kelliher FM, de Pury DGG, Schulze ED (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopy. Plant Cell Environ 18:1183–1200. doi:10.1111/j.1365-3040.1995.tb00628.x

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8(3):315–323. doi:10.2307/2389824

    Article  Google Scholar 

  • Mahfouf JF (1990) A numerical simulation of the surface water budget during HAPEX-MOBILHY. Bound-Layer Meteorol 53(3):201–222. doi:10.1007/BF00154442

    Article  Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740. doi:10.1046/j.1365-3040.1999.00453.x

    Article  Google Scholar 

  • Medlyn BE, Badek F-W, de Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R et al (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495. doi:10.1046/j.1365-3040.1999.00523.x

    Article  Google Scholar 

  • Mercado LM, Lloyd J, Carswell F, Mahli Y, Meir P, Nobre A (2006) Modelling Amazonian forest eddy covariance data: a comparison of big leaf versus sun/shade model for the C-14 tower at Manaus I. Canopy photosynthesis. Acta Amazon 36:69–82. doi:10.1590/S0044-59672006000100009

    Article  Google Scholar 

  • Mihailovic DT (1996) Description of a land–air parameterization scheme (LAPS). Global Planet Chang 13:207–215. doi:10.1016/0921-8181(95)00048-8

    Article  Google Scholar 

  • Mihailovic DT (2003) Implementation of land-air parameterization scheme (LAPS) in a limited area model. Final Report. The New York State Energy Conservation and Development Authority, Albany, NY, 110 pp

  • Mihailovic DT, Eitzinger J (2007) Modelling temperatures of crop environment. Ecol Model 2:465–475. doi:10.1016/j.ecolmodel.2006.11.009

    Article  Google Scholar 

  • Mihailovic DT, Kallos G (1997) A sensitivity study of a coupled soil-vegetation boundary-layer scheme for use in atmospheric modeling. Bound-Layer Meteorol 82:283–315. doi:10.1023/A:1000169412287

    Article  Google Scholar 

  • Mihailovic DT, Rajkovic B, Lalic B, Dekic L (1995) Schemes for parameterizing evaporation from a non-plant-covered surface and their impact in on partitioning the surface energy in land–air exchange parameterization. J Appl Meteorol 34:2462–2475. doi:10.1175/1520-0450(1995)034<2462:SFPEFA>2.0.CO;2

    Article  Google Scholar 

  • Mihailovic DT, Lee TJ, Pielke RA, Lalic B, Arsenic ID, Rajkovic B (2000) Comparison of different boundary layer surface schemes using single point micrometeorological field data. Theor Appl Climatol 67:135–151. doi:10.1007/s007040070003

    Article  Google Scholar 

  • Mihailovic DT, Lalic B, Arsenic I, Eitzinger J, Dusanic N (2002) Simulation of air temperature inside the canopy by the LAPS surface scheme. Ecol Model 147:199–207. doi:10.1016/S0304-3800(01)00422-7

    Article  Google Scholar 

  • Mihailovic DT, Lazic J, Leśny J, Olejnik J, Lalic B, Kapor D, Cirisan A (2010) A new design of the LAPS land surface scheme for use over and through heterogeneous and non-heterogeneous surfaces: numerical simulations and tests. Theor Appl Climatol 100:299–323. doi:10.1007/s00704-009-0184-z

    Article  Google Scholar 

  • Misson L, Baldocchi DD, Black TA et al (2007) Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: a synthesis based on FLUXNET data. Agric For Meteorol 144:14–31. doi:10.1016/j.agrformet.2007.01.006

    Article  Google Scholar 

  • Mix W, Goldberg V, Bernhardt KH (1994) Numerical experiments with different approaches for boundary layer modeling under large-area forest canopy conditions. Meteorol Z 3:187–192

    Google Scholar 

  • Munger W, Wofsy S (1999) Canopy-atmosphere exchange of carbon, water and energy at Harvard Forest EMS Tower since 1991. Harvard Forest Data Archive: HF004

  • Newcomer J, Landis D, Conrad S, Curd S, Huemmrich K, Knapp D, Morrell A, Nickeson J, Papagno A, Rinker D, Strub R, Twine T, Hall F, Sellers P, et al (2000) Collected data of the Boreal Ecosystem-Atmosphere Study. CD-ROM. NASA

  • Niu S, Yuan Z, Zhang Y, Liu W, Zhang L, Huang J et al (2005) Photosynthetic responses of C3 and C4 species to seasonal water variability and competition. J Exp Bot 56:2867–2876. doi:10.1093/jxb/eri281

    Article  Google Scholar 

  • Norman JM (1993) Scaling processes between leaf and canopy. In: Ehleringer JR, Field C (eds), Scaling physiological processes: leaf to globe. Academic Press, pp 41–75

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi:10.1126/science.1201609

    Article  Google Scholar 

  • Pielke PA (1984) Mesoscale meteorological modeling. Academic, New York

    Google Scholar 

  • Schaefer K, Schwalm CR, Williams C et al (2012) A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis. J Geophys Res 117, G03010. doi:10.1029/2012JG001960

    Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (Sib) for use within general-circulation models. J Atmos Sci 43(6):505–531. doi:10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA et al (1997a) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275(5299):502–509. doi:10.1126/science.275.5299.502

    Article  Google Scholar 

  • Sellers PJ, Hall FG, Kelly RD, Black A, Baldocchi D, Berry J, Ryan M, Jon Ranson K, Crill PM, Lettenmaier DP, Margolis H, Cihlar J, Newcomer D, Goodison B, Wickland DE, Guertin FE (1997b) BOREAS in 1997: experiment overview, scientific results, and future directions. J Geophys Res 102(D4):28,731–28,769. doi:10.1029/97JD03300

    Article  Google Scholar 

  • Song Q, Zhang G, Zhu X-G (2012) Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2—a theoretical study using a mechanistic model of canopy photosynthesis. Funct Plant Biol 40:109–124. doi:10.1071/FP12056

    Google Scholar 

  • Sprintsin M, Chen JM, Desai A, Gough CM (2012) Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America. J Geophys Res 117, G01023. doi:10.1029/2010JG001407

    Google Scholar 

  • Treuhaft RN, Asner GP, Law BE, Van Tuyl S (2002) Forest leaf area density profiles from the quantitative fusion of radar and hyperspectral data. J Geophys Res 107(D21):4568. doi:10.1029/2001JD000646

    Article  Google Scholar 

  • Urbanski S, Barford C, Wofsy S, Kucharik C, Pyle E, Budney J, McKain K, Fitzjarrald D, Czikowsky M, Munger JW (2007) Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J Geophys Res 112, G02020. doi:10.1029/2006JG000293

    Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi:10.1007/BF00384257

    Article  Google Scholar 

  • Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species. J Exp Bot 44:907–920. doi:10.1093/jxb/44.5.907

    Article  Google Scholar 

  • Yuan W, Liu S, Zhou G et al (2007) Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric For Meteorol 143:189–207. doi:10.1016/j.agrformet.2006.12.001

    Article  Google Scholar 

  • Zeng P, Takahashi H (2000) A first order closure model for the wind flow within and above vegetation canopies. Agric For Meteorol 103:301–313. doi:10.1016/S0168-1923(00)00133-7

    Article  Google Scholar 

Download references

Acknowledgments

The research work described in this paper was realized as a part of the project “Studying climate change and its influence on the environment: impacts, adaptation, and mitigation” (43007) financed by the Ministry of Education and Science of the Republic of Serbia within the framework of integrated and interdisciplinary research for the period 2011–2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Firanj.

Appendix A

Appendix A

1.1 Flux partitioning in LAPS

  1. 1.

    Fluxes from the leaf level to the canopy air space are represented in the following equations:

    $$ {H}_c=\rho {c}_p\frac{2\left({T}_c-{T}_a\right)}{r_b}, $$
    (A.1)
    $$ \lambda {E}_c=\left({e}_{*}\left({T}_c\right)-{e}_a\right)\frac{\rho {c}_p}{\gamma}\left(\frac{W_c}{r_b}+\frac{1-{W}_c}{r_b+{r}_c}\right), $$
    (A.2)

    where c refers to the canopy, and the other values are ρ, air density (kg m−3); C p , specific heat of the air at constant pressure (J kg−1 K−1); γ, the psychrometric constant (hPa K−1); T c , leaf temperature (K); T a , temperature of the canopy air space (K); r b bulk canopy boundary layer resistance (s m−1); and r c is the bulk canopy stomatal resistance (s m−1); e * (T c ) saturated vapor pressure for the canopy temperature (hPa); e a , vapor pressure inside the canopy air space (hPa); W c , part of the vegetation wet surface; and λ is the latent heat of evaporation.

  2. 2.

    Fluxes from the ground to the canopy air space are represented in the following equations:

    $$ {H}_{gs}=\rho {c}_p\frac{2\left({T}_{gs}-{T}_a\right)}{r_d}, $$
    (A.3)
    $$ \lambda {E}_{gs}=\frac{\left({\alpha}_s{e}_{*}\left({T}_{gs}\right)-{e}_a\right)}{r_b+{r}_d}\frac{\rho {c}_p}{\gamma}, $$
    (A.4)

    where gs refers to the ground surface; the other values are T gs , ground surface temperature; e * (T gs ), saturated vapor pressure for the ground surface temperature; r d is the aerodynamic resistance between the soil surface and the canopy air space (s m−1); and α s is the soil wetness factor (Mihailovic et al. 1995).

  3. 3.

    Fluxes from the canopy air space to the reference level above vegetation are represented in the following equations:

    $$ {H}_r={H}_c+{H}_{gs}=\rho {c}_p\frac{\left({T}_a-{T}_r\right)}{r_a}, $$
    (A.5)
    $$ \lambda {E}_r=\lambda {E}_c+\lambda {E}_{gs}=\frac{\rho {c}_p}{\gamma}\frac{\left({e}_a-{e}_r\right)}{r_a}, $$
    (A.6)

    where r is the reference level; the other values are T r , air temperature at the reference level; e r , vapor pressure at the reference level above the vegetation; and r a is the aerodynamic resistance (s m−1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firanj, A., Lalic, B. & Podrascanin, Z. The impact of forest architecture parameterization on GPP simulations. Theor Appl Climatol 121, 529–544 (2015). https://doi.org/10.1007/s00704-014-1251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1251-7

Keywords

Navigation