Skip to main content

Advertisement

Log in

Estimation of urban heat island intensity using biases in surface air temperature simulated by a nonhydrostatic regional climate model

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study demonstrates that urban heat island (UHI) intensity can be estimated by comparing observational data and the outputs of a well-developed high-resolution regional climate model. Such an estimate is possible because the observations include the effects of UHI, whereas the model used does not include urban effects. Therefore, the errors in the simulated surface air temperature, defined as the difference between simulated and observed temperatures (simulated minus observed), are negative in urban areas but 0 in rural areas. UHI intensity is estimated by calculating the difference in temperature error between urban and rural areas. Our results indicate that overall UHI intensity in Japan is 1.5 K and that the intensity is greater in nighttime than in daytime, consistent with the previous studies. This study also shows that root mean square error and the magnitude of systematic error for the annual mean temperature are small (within 1.0 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26. doi:10.1002/joc.859

    Article  Google Scholar 

  • Arritt RW, Rummukainen M (2011) Challenges in regional-scale climate modeling. Bull Amer Meteor Soc 92:365–368. doi:10.1175/2010BAMS2971.1

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteor 30:327–341

    Article  Google Scholar 

  • Bourke RH, Garrett RP (1987) Sea ice thickness distribution in the Arctic Ocean. Cold Regions Sci and Tech 13:259–280. doi:10.1016/0165-232X(87)90007-3

    Article  Google Scholar 

  • Brown PJ, DeGaetano AT (2010) Using a discriminant analysis to classify urban and rural climate stations based on diurnal range of temperature and dewpoint depression. J Appl Meteor Climatol 49:2366–2379

    Article  Google Scholar 

  • Fujibe F (2011) Urban warming in Japanese cities and its relation to climate change monitoring. Int J Climatol 31:162–173. doi:10.1002/joc.2142

    Article  Google Scholar 

  • Gallo KP, Easterling DR, Peterson TC (1996) The influence of land use/land cover on climatological values of the diurnal temperature range. J Climate 9:2941–2944

    Article  Google Scholar 

  • Grimmond CSB (2006) Progress in measuring and observing the urban atmosphere. Theor Appl Climatol 84:3–22. doi:10.1007/s00704-005-0140-5

    Article  Google Scholar 

  • Hirai M, Ohizumi M (2004) Development of a new land-surface model for JMA-GSM. Extended abstract of 20th Conf Wea Anal. Forecasting/16th Conf NWP, P2.22. http://ams.confex.com/ams/84Annual/techprogram/paper_68652.htm. Accessed 1 Aug 2012

  • Ikawa M, Mizuno H, Matsuo T, Murakami M, Yamada Y, Saito K (1991) Numerical modeling of the convective snow cloud over the Sea of Japan: precipitation mechanism and sensitivity to ice crystal nucleation rates. J Meteor Soc Japan 69:641–667

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.)). Cambridge University, Cambridge, p 996

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteor 43:170–181

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1990) A one-dimensional entrainment/detrainment plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531

    Article  Google Scholar 

  • Kanada S, Nakano M, Hayashi S, Kato T, Nakamura M, Kurihara K (2008) Reproducibility of maximum daily precipitation amount over Japan by a high-resolution non-hydrostatic model. Sci Online Lett Atmos 4:105–108. doi:10.2151/sola.2008-027

    Google Scholar 

  • Kanda M (2006) Progress in the scale modeling of urban climate: review. Theor Appl Climatol 84:23–33. doi:10.1007/s00704-005-0141-4

    Article  Google Scholar 

  • Kanda M (2007) Progress in urban meteorology: a review. J Meteor Soc Japan 85B:363–383

    Article  Google Scholar 

  • Kato T, Yamada Y, Nakano M (2010) Improvement of Kain–Fritsch convection parameterization scheme to suppress its false predictions of rainfall areas along coastal lines. CAS/JSC WGNE Res Act Atmos Ocean Model 40:4.07–4.08

    Google Scholar 

  • Kida H, Koide T, Sasaki H, Chiba M (1991) A new approach to coupling a limited area model with a GCM for regional climate simulations. J Meteor Soc Japan 69:723–728

    Google Scholar 

  • Kitagawa H (2000) Radiation processes. Separate Vol Annu Rep NPD 46:16–31 (in Japanese)

    Google Scholar 

  • Kostopoulou E, Tolika K, Tegoulias I, Giannakopoulos C, Somot S, Anagnostopoulou C, Maheras P (2009) Evaluation of a regional climate model using in situ temperature observations over the Balkan Peninsula. Tellus 61A:357–370

    Google Scholar 

  • Kurihara K, Ishihara K, Sasaki H, Fukuyama Y, Saitou H, Takayabu I, Murazaki K, Sato Y, Yukimoto S, Noda A (2005) Projection of climatic change over Japan due to global warming by high-resolution regional climate model in MRI. Sci Online Lett Atmos 1:97–100. doi:10.2151/sola.2005-026

    Google Scholar 

  • Kusaka H (2008) Recent progress on urban climate study in Japan. Geograph Rev Japan 81:361–374

    Article  Google Scholar 

  • Landsberg HE (1981) The urban climate. Academic, New York

    Google Scholar 

  • Lin YH, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteor 22:1065–1092

    Article  Google Scholar 

  • Masson V (2006) Urban surface modeling and the meso-scale impact of cities. Theor Appl Climatol 84:35–45. doi:10.1007/s00704-005-0142-3

    Article  Google Scholar 

  • Mizuta R, Yoshimura H, Murakami H, Matsueda M, Endo H, Ose T, Kamiguchi K, Hosaka M, Sugi M, Yukimoto S, Kusunoki S, Kitoh A (2012) Climate simulations using the improved MRI-AGCM with 20-km grid. J Meteor Soc Japan 90A:233–258

    Article  Google Scholar 

  • Murakami M (1990) Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud. The 19 July 1981 CCOPE cloud. J Meteor Soc Japan 68:107–128

    Google Scholar 

  • Murakami M, Clark TL, Hall WD (1994) Numerical simulation of convective snow clouds over the Sea of Japan: two-dimensional simulation of mixed layer development and convective snow cloud formation. J Meteor Soc Japan 72:43–62

    Google Scholar 

  • Murata A, Nakano M, Kanada S, Kurihara K, Sasaki H (2012) Summertime temperature extremes over Japan in the late 21st century projected by a high-resolution regional climate model. J Meteor Soc Japan 90A:101–122

    Article  Google Scholar 

  • Nakanishi M, Niino H (2004) An improved Mellor–Yamada level-3 model with condensation physics: its design and verification. Bound Layer Meteor 112:1–31

    Article  Google Scholar 

  • Nakano M, Kato T, Hayashi S, Kanada S, Yamada Y, Kurihara K (2012) Development of a 5-km-mesh cloud-system-resolving regional climate model at the Meteorological Research Institute. J Meteor Soc Japan 90A:339–350

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Methuen, London

    Google Scholar 

  • Oke TR (2006) Towards better scientific communication in urban climate. Theor Appl Climatol 84:179–190. doi:10.1007/s00704-005-0153-0

    Article  Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteor Soc Japan 85:369–432. doi:10.2151/jmsj.85.369

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Chang 1:82–96. doi:10.1002/wcc.008

    Article  Google Scholar 

  • Saito K, Fujita T, Yamada Y, Ishida J, Kumagai Y, Aranami K, Ohmori S, Nagasawa R, Kumagai S, Muroi C, Kato T, Eito H, Yamazaki Y (2006) The operational JMA nonhydrostatic mesoscale model. Mon Wea Rev 134:1266–1298

    Article  Google Scholar 

  • Saito K, Ishida J, Aranami K, Hara T, Segawa T, Narita M, Honda Y (2007) Nonhydrostatic atmospheric models and operational development at JMA. J Meteor Soc Japan 85B:271–304

    Article  Google Scholar 

  • Sakakibara Y, Hara Y, Kato T (1996) The feature of heat island intensity with two extra stations method in the southeast part of Koshigaya City. Tenki 43:537–543 (in Japanese)

    Google Scholar 

  • Sasaki H, Sato Y, Adachi K, Kida H (2000) Performance and evaluation of the MRI regional climate model with the spectral boundary coupling method. J Meteor Soc Japan 78:477–489

    Google Scholar 

  • Sasaki H, Kurihara K, Takayabu I, Uchiyama T (2008) Preliminary experiments of reproducing the present climate using the non-hydrostatic regional climate model. Sci Online Lett Atmos 4:25–28. doi:10.2151/sola.2008-007

    Google Scholar 

  • Sasaki H, Murata A, Hanafusa M, Oh’izumi M, Kurihara K (2011) Reproducibility of present climate in a non-hydrostatic regional climate model nested within an atmosphere general circulation model. Sci Online Lett Atmos 7:173–176. doi:10.2151/sola.2011-044

    Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. doi:10.1029/2008JD011021

    Article  Google Scholar 

  • Wang K, Ye H, Chen F, Xiong Y, Wang C (2012) Urbanization effect on the diurnal temperature range: different roles under solar dimming and brightening. J Climate 25:1022–1027. doi:10.1175/JCLI-D-10-05030.1

    Article  Google Scholar 

  • Yabu S, Murai S, Kitagawa H (2005) Clear sky radiation scheme. Separate Vol Annu Rep NPD 51:53–64 (in Japanese)

    Google Scholar 

  • Zhu J, Liang X-Z (2007) Regional climate model simulations of U.S. precipitation and surface air temperature during 1982–2002: interannual variation. J Climate 20:218–232

    Article  Google Scholar 

Download references

Acknowledgments

Numerical simulations using AGCM20 were conducted under the framework of the “Projection of the change in future weather extremes using super-high-resolution atmospheric models” supported by the KAKUSHIN Program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. These simulations were performed on the Earth Simulator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Murata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, A., Sasaki, H., Hanafusa, M. et al. Estimation of urban heat island intensity using biases in surface air temperature simulated by a nonhydrostatic regional climate model. Theor Appl Climatol 112, 351–361 (2013). https://doi.org/10.1007/s00704-012-0739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0739-2

Keywords

Navigation