, Volume 94, Issue 3-4, pp 187-213

Evaluation of Community Climate System Model soil temperatures using observations from Russia

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Soil temperatures simulated by the fully coupled Community Climate System Model (CCSM) version 3.0 are evaluated using three gridded climatologies (1951–1980, 1961–1990, 1971–2000) based on data from more than 400 Russian sites. CCSM captures the annual phase of the soil temperature cycle well, but not the amplitude. It provides slightly too high (low) soil temperatures in winter (summer). Root mean square errors, on average, are less than 5 K.

Simulated near-surface air temperatures agree well, on average, with near-surface air temperatures from reanalysis data. Errors in simulated atmospheric-temperature forcing correlate statistically significantly (95% or higher confidence level) with soil temperature errors, i.e. contribute to discrepancy in soil temperature simulation. Comparison to International Satellite Cloud Climatology project data shows that errors in simulated cloud fraction explain some soil and near-surface air temperature and precipitation discrepancies. Evaluation by means of Global Precipitation Climatology Centre data identifies inaccurately-simulated precipitation as a contributor to underestimating summer soil temperatures. Comparison to snow-depth observations shows that overestimating snow depth yields winter soil-temperature overestimation.

Sensitivity studies show that uncertainty in mineral-soil composition notably, and differences between the vegetation in CCSM and nature marginally contribute to discrepancies between simulated and observed soil-temperature climatology.

Correspondence: Nicole Mölders, Geophysical Institute and College of Natural Sciences and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, AK 99775-7320, USA