Skip to main content

Advertisement

Log in

Carbon cycle–climate feedback sensitivity to parameter changes of a zero-dimensional terrestrial carbon cycle scheme in a climate model of intermediate complexity

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

A series of sensitivity runs have been performed with a coupled climate–carbon cycle model. The climatic component consists of the climate model of intermediate complexity IAP RAS CM. The carbon cycle component is formulated as a simple zero-dimensional model. Its terrestrial part includes gross photosynthesis, and plant and soil respirations, depending on temperature via Q 10-relationships (Lenton, 2000). Oceanic uptake of anthropogenic carbon is formulated is a bi-linear function of tendencies of atmospheric concentration of CO2 and globally averaged annual mean sea surface temperature. The model is forced by the historical industrial and land use emissions of carbon dioxide for the second half of the 19th and the whole of the 20th centuries, and by the emission scenario SRES A2 for the 21st century. For the standard set of the governing parameters, the model realistically captures the main features of the Earth’s observed carbon cycle. A large number of simulations have been performed, perturbing the governing parameters of the terrestrial carbon cycle model. In addition, the climate part is perturbed, either by zeroing or artificially increasing the climate model sensitivity to the doubling of the atmospheric CO2 concentration. Performing the above mentioned perturbations, it is possible to mimic most of the range found in the C4MIP simulations. In this way, a wide range of the climate–carbon cycle feedback strengths is obtained, differing even in the sign of the feedback. If the performed simulations are subjected to the constraints of a maximum allowed deviation of the simulated atmospheric CO2 concentration (pCO2(a)) from the observed values and correspondence between simulated and observed terrestrial uptakes, it is possible to narrow the corresponding uncertainty range. Among these constraints, considering pCO2(a) and uptakes are both important. However, the terrestrial uptakes constrain the simulations more effectively than the oceanic ones. These constraints, while useful, are still unable to rule out both extremely strong positive and modest negative climate–carbon cycle feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B Adams A White TM Lenton (2004) ArticleTitleAn analysis of some diverse approaches to modelling terrestrial net primary productivity Ecol Mod 177 353–391 Occurrence Handle10.1016/j.ecolmodel.2004.03.014

    Article  Google Scholar 

  • V Brovkin J Bendtsen M Claussen A Ganopolski C Kubatzki V Petoukhov A Andreev (2002) ArticleTitleCarbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model Glob Biogeochem Cycles 16 1139 Occurrence Handle10.1029/2001GB001662

    Article  Google Scholar 

  • V Brovkin S Sitch W Bloh von M Claussen E Bauer W Cramer (2004) ArticleTitleRole of land cover changes for atmospheric CO2 increase and climate change during the last 150 years Glob Change Biol 10 1253–1266 Occurrence Handle10.1111/j.1365-2486.2004.00812.x

    Article  Google Scholar 

  • MI Budyko YA Izrael (Eds) (1991) Anthropogenic climate change Arizona Univ. Press Tucson

    Google Scholar 

  • PM Cox RA Betts M Collins PP Harris C Huntingford CD Jones (2004) ArticleTitleAmazonian forest dieback under climate–carbon cycle projections for the 21st century Theor Appl Climatol 78 137–156 Occurrence Handle10.1007/s00704-004-0049-4

    Article  Google Scholar 

  • PM Cox RA Betts CD Jones SA Spall IJ Totterdell (2000) ArticleTitleAcceleration of global warming due to carbon-cycle feedbacks in a coupled climate model Nature 408 184–187 Occurrence Handle10.1038/35041539

    Article  Google Scholar 

  • J-L Dufresne P Friedlingstein M Berthelot L Bopp P Ciais L Fairhead H Le Treut P Monfray (2002) ArticleTitleOn the magnitude of positive feedback between future climate change and the carbon cycle Geophys Res Lett 29 1405 Occurrence Handle10.1029/2001GL013777

    Article  Google Scholar 

  • Eliseev AV, Mokhov II, Karpenko AA (2006) Variations of climate and carbon cycle in the 20th–21st centuries in climate model of intermediate complexity. Izvestiya, Atmos Ocean Phys 42 (in press)

  • GD Farquhar S Caemmerer von JA Berry (1980) ArticleTitleA biochemical model of photosynthetic CO2 assimilation in leaves of c 3 species Planta 149 78–90 Occurrence Handle10.1007/BF00386231

    Article  Google Scholar 

  • CE Forest PH Stone AP Sokolov (2006) ArticleTitleEstimated PDFs of climate system properties including natural and anthropogenic forcings Geophys Res Lett 33 L01705 Occurrence Handle10.1029/2005GL023977

    Article  Google Scholar 

  • P Friedlingstein L Bopp P Ciais J-L Dufresne L Fairhead H Le Treut P Monfray J Orr (2001) ArticleTitlePositive feedback between future climate change and the carbon cycle Geophys Res Lett 28 1543–1546 Occurrence Handle10.1029/2000GL012015

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, Bloh von W, Brovkin V, Doney S, Eby M, Fung I, Govindasamy B, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) J Climate Climate–carbon cycle feedback analysis, results from the C4MIP model intercomparison (accepted)

  • P Friedlingstein J-L Dufresne PM Cox P Rayner (2003) ArticleTitleHow positive is the feedback between climate change and the carbon cycle? Tellus 55B 692–700

    Google Scholar 

  • B Govindasamy S Thompson A Mirin M Wickett K Caldeira C Delire (2005) ArticleTitleIncrease of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model Tellus 57B 153–163

    Google Scholar 

  • D Handorf VK Petoukhov K Dethloff AV Eliseev A Weisheimer II Mokhov (1999) ArticleTitleDecadal climate variability in a coupled atmosphere-ocean climate model of moderate complexity J Geophys Res 104 27253–27275 Occurrence Handle10.1029/1999JD900836

    Article  Google Scholar 

  • JT Houghton BA Callander SK Varney (Eds) (1992) Climate change: the supplementary report to the IPCC scientific assessment, intergovernmental panel on climate change Cambridge University Press Cambridge 198

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden van der PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York: Cambridge University Press, 881 pp

  • RA Houghton (2003) ArticleTitleRevised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000 Tellus 55B 378–390

    Google Scholar 

  • JI House IC Prentice N Ramankutty RA Houghton M Heimann (2003) ArticleTitleReconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks Tellus 55B 345–363

    Google Scholar 

  • C Huntingford PM Cox TM Lenton (2000) ArticleTitleContrasting responses of a simple terrestrial ecosystem model to global change Ecol Mod 177 41–58 Occurrence Handle10.1016/S0304-3800(00)00330-6

    Article  Google Scholar 

  • C Huntingford PP Harris N Gedney PM Cox RA Betts JA Marengo JHC Gash (2004) ArticleTitleUsing a GCM analogue model to investigate the potential for Amazonian forest dieback Theor Appl Climatol 78 177–185 Occurrence Handle10.1007/s00704-004-0051-x

    Article  Google Scholar 

  • Jones CD, Cox PM (2001) Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2. Atmos Sci Lett

  • CD Jones PM Cox RLH Essery DL Roberts MJ Woodage (2003) ArticleTitleStrong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols Geophys Res Lett 30 1479 Occurrence Handle10.1029/2003GL016867

    Article  Google Scholar 

  • Jones CD, Cox PM, Huntingford C (2006) Climate–carbon cycle feedbacks under stabilisation: uncertainty and observational constraints. Tellus 58B (in press)

  • PD Jones M New DE Parker S Martin IG Rigor (1999) ArticleTitleSurface air temperature and its changes over the past 150 years Rev Geophys 37 173–199 Occurrence Handle10.1029/1999RG900002

    Article  Google Scholar 

  • CD Keeling JFS Chine TP Whorf (1996) ArticleTitleIncreased activity of northern vegetation inferred from atmospheric CO2 measurements Nature 382 146–149 Occurrence Handle10.1038/382146a0

    Article  Google Scholar 

  • O Kwon JL Schnoor (1994) ArticleTitleSimple global carbon model: The atmosphere-terrestrial biosphere-ocean interaction Glob Biogeochem Cycles 8 295–305 Occurrence Handle10.1029/94GB00768

    Article  Google Scholar 

  • C Le Quéré O Aumant L Bopp P Bousquet P Ciais R Francey M Heimann RF Keeling H Kheshgi P Peylin SC Piper IC Prentice P Rayner (2003) ArticleTitleTwo decades of ocean CO2 sink and variability Tellus 55B 649–656

    Google Scholar 

  • TM Lenton (2000) ArticleTitleLand and ocean carbon cycle feedback effects on global warming in a simple Earth system model Tellus 52B 1159–1188

    Google Scholar 

  • J Lloyd JA Taylor (1994) ArticleTitleOn the temperature dependence of soil respiration Func Ecol 8 315–323 Occurrence Handle10.2307/2389824

    Article  Google Scholar 

  • Marland G, Boden TA, Andres RJ (2005) Global, regional, and national CO2 emissions. Trends: a compendium of data on global change. carbon dioxide information analysis center. Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn

  • HD Matthews AJ Weaver KJ Meissner (2005) ArticleTitleTerrestrial carbon cycle dynamics under recent and future climate change J Climate 18 1609–1628 Occurrence Handle10.1175/JCLI3359.1

    Article  Google Scholar 

  • HD Matthews AJ Weaver KJ Meissner NP Gillett M Eby (2004) ArticleTitleNatural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle Clim Dyn 22 461–479 Occurrence Handle10.1007/s00382-004-0392-2

    Article  Google Scholar 

  • JM Melillo PA Steudler JD Aber K Newkirk H Lux FP Bowles C Catricala A Magill T Ahrens S Morrisseau (2002) ArticleTitleSoil warming and carbon-cycle feedbacks to the climate system Science 298 2173–2176 Occurrence Handle10.1126/science.1074153

    Article  Google Scholar 

  • NB Melnikov BC O’Neill (2006) ArticleTitleLearning about the carbon cycle from global budget data Geophys Res Lett 33 L02705 Occurrence Handle10.1029/2005GL023935

    Article  Google Scholar 

  • II Mokhov PF Demchenko AV Eliseev VCh Khon DV Khvorostyanov (2002) ArticleTitleEstimation of global and regional climate changes during the 19th–21st centuries on the basis of the IAP RAS model with consideration for anthropogenic forcing Izvestiya, Atmos Ocean Phys 38 555–568

    Google Scholar 

  • II Mokhov AV Eliseev PF Demchenko VCh Khon MG Akperov MM Arzhanov AA Karpenko VA Tikhonov AV Chernokulsky EV Sigaeva (2005) ArticleTitleClimate changes and their assessment based on the IAP RAS global model simulations Doklady Earth Sci 402 591–595

    Google Scholar 

  • II Mokhov AV Eliseev AA Karpenko (2006) ArticleTitleSensitivity of the IFA RAN Global Climate Model with an interactive carbon cycle to anthropogenic influence Doklady Earth Sci 407 424–428 Occurrence Handle10.1134/S1028334X06030172

    Article  Google Scholar 

  • PK Patra S Maksyutov M Ishizawa T Nakazawa T Takahashi J Ukita (2005) ArticleTitleInterannual and decadal changes in the sea–air CO2> flux from atmospheric CO2 inverse modeling Glob Biogeochem Cycles 19 GB4013 Occurrence Handle10.1029/2004GB002257

    Article  Google Scholar 

  • V Petoukhov M Claussen A Berger M Crucifix M Eby AV Eliseev T Fichefet A Ganopolski H Goosse I Kamenkovich II Mokhov M Montoya LA Mysak A Sokolov P Stone Z Wang A Weaver (2005) ArticleTitleEMIC intercomparison project (EMIP-CO2): Comparative analysis of EMIC simulations of current climate and equilibrium and transient reponses to atmospheric CO2 doubling Clim Dyn 25 363–385 Occurrence Handle10.1007/s00382-005-0042-3

    Article  Google Scholar 

  • VK Petoukhov II Mokhov AV Eliseev VA Semenov (1998) The IAP RAS global climate model Dialogue-MSU Moscow 110

    Google Scholar 

  • G-K Plattner F Joos TF Stocker (2002) ArticleTitleRevision of the global carbon budget due to changing air–sea oxygen fluxes Glob Biogeochem Cycles 16 1096 Occurrence Handle10.1029/2001GB001746

    Article  Google Scholar 

  • JW Raich WH Schlesinger (1992) ArticleTitleThe global carbon dioxide flux in soil respiration and its relationship to vegetation and climate Tellus 44B 81–99

    Google Scholar 

  • CL Sabine RA Feely N Gruber RM Key K Lee JL Bullister R Wanninkhof CS Wong DWR Wallace B Tilbrook FJ Millero T-H Peng A Kozyr T Ono AF Rios (2004) ArticleTitleThe oceanic sink for anthropogenic CO2 Science 305 367–371 Occurrence Handle10.1126/science.1097403

    Article  Google Scholar 

  • U Siegenthaler JL Sarmiento (1993) ArticleTitleAtmospheric carbon dioxide and the ocean Nature 365 119–125 Occurrence Handle10.1038/365119a0

    Article  Google Scholar 

  • DA Stainforth T Aina C Christensen M Collins N Faull DJ Frame JA Kettleborough S Knight A Martin JM Murphy C Piani D Sexton LA Smith RA Spicer AJ Thorpe MR Allen (2005) ArticleTitleUncertainty in predictions of the climate response to rising levels of greenhouse gases Nature 433 403–406 Occurrence Handle10.1038/nature03301

    Article  Google Scholar 

  • YU Svirezhev VF Krapivin AM Tarko (1985) Modeling of the main biosphere cycles TF Malone JS Roederer (Eds) Global change Cambridge University Press Cambridge 298–313

    Google Scholar 

  • H Thomas MH England V Ittekkot (2001) ArticleTitleAn off-line 3D model of anthropogenic CO2 uptake by the oceans Geophys Res Lett 28 547–550 Occurrence Handle10.1029/2000GL011642

    Article  Google Scholar 

  • SE Trumbore OA Chadwick R Amundsen (1996) ArticleTitleRapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change Science 272 393–396 Occurrence Handle10.1126/science.272.5260.393

    Article  Google Scholar 

  • N Zeng H Qian C Roedenbeck M Heimann (2005) ArticleTitleImpact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle Geophys Res Lett 32 L22709 Occurrence Handle10.1029/2005GL024607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, A., Mokhov, I. Carbon cycle–climate feedback sensitivity to parameter changes of a zero-dimensional terrestrial carbon cycle scheme in a climate model of intermediate complexity. Theor. Appl. Climatol. 89, 9–24 (2007). https://doi.org/10.1007/s00704-006-0260-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-006-0260-6

Keywords

Navigation