Skip to main content

Advertisement

Log in

Eta model simulations using two radiation schemes in clear-sky conditions

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This work evaluates the performance of two radiation parameterization schemes in 30-day clear-sky runs of the Eta model over a region in Southeast Brazil. Two versions of the Eta model are compared: a version using the radiation scheme developed by the Geophysical Fluid Dynamics Laboratory (GFDL) and a recently developed version using the Rapid Radiative Transfer Model for GCM (RRTMG). These simulations are compared against CMSAF satellite data and surface station data. The simulation using RRTMG produced downward surface shortwave radiation fluxes closer to observations and reduced the systematic positive bias of the Eta simulation using the GFDL scheme. The 2-m temperature negative bias found in the Eta-GFDL simulations is reduced in the Eta-RRTMG simulations, which results from a larger net total radiation in the Eta-RRTMG simulations. The new version has better accuracy than the Eta using the GFDL scheme for most of the evaluated variables, particularly for clear-sky conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Badescu V, Dumitrescu A (2013) The CMSAF hourly solar irradiance database (Product CM54). Accuracy and bias corrections with illustrations for Romania (South-Eastern Europe). J Atmos Solar Terr Phys 93:100–109

    Article  Google Scholar 

  • Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Q J R Meteorol Soc 112:693–709

    Google Scholar 

  • Black TL (1994) The new NMC mesoscale Eta model: description ad forecast examples. Weather Forecast 9:265–278

    Article  Google Scholar 

  • Cess RD, Zhang M, Valero FPJ, Pope SK, Bucholtz A, Bush B, Zender CS, Vitko J Jr (1999) Absorption of solar radiation by the cloudy atmosphere: further interpretations of collocated aircraft measurements. J Geophys Res 104:2059–2066

    Article  Google Scholar 

  • Chou SC (1996) Modelo Regional Eta. Climanálise, Cachoeira Paulista, SP, v. 1, Ed. Especial (in Portuguese)

  • Chou SC, Tanajura CAS, Xue Y, Nobre CA (2002) Validation of the coupled Eta/SSiB Model over South America. J Geophys Res 107(D20):8088. doi:10.1029/2000JD000270

    Article  Google Scholar 

  • Chou SC, Bustamante J, Gomes JL (2005) Evaluation of Eta model seasonal precipitation forecasts over South America. Nonlinear Process Geophys 12:537–555

    Article  Google Scholar 

  • Chou SC, Marengo JA, Lyra A, Sueiro G, Pesquero J, Alves LM, Kay G, Betts R, Chagas D, Gomes JL, Bustamante J, Tavares P (2012) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn 38(3–4):635–653. doi:10.1007/s00382-011-1002-8

    Article  Google Scholar 

  • Chou SC, Lyra A, Mourão C, Dereczynski C, Pilotto I, Gomes J, Bustamante J, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Sueiro G, Siqueira G, Nobre P, Marengo J (2014) Evaluation of the Eta simulations nested in three global climate models. Am J Clim Change 3:438–454. doi:10.4236/ajcc.2014.35039

    Article  Google Scholar 

  • Clough SA, Iacono MJ (1995) Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J Geophys Res 100(D8):16519–16535. doi:10.1029/95JD01386

    Article  Google Scholar 

  • Clough AS, Iacono MJ, Moncet JL (1992) Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor. J Geophys Res 97:15761–15785

    Article  Google Scholar 

  • Collins WD et al (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR Tech. Note NCAR/TN-464 + STR, Natl. Cent. for Atmos. Res., Boulder

  • Cusack S, Slingo A, Edwards JM, Wild M (1998) The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM. Q J R Meteorol Soc 124:2517–2526

    Google Scholar 

  • Ek MB, Mitchell MK, Liu Y, Rogers E, Grunman P, Koren V, Gayano G, Tarpley JD (2003) Implementation of Noah Land Model advances in the NCEP operational Eta Model. J Geophys Res 108(D22):8851–8867

    Article  Google Scholar 

  • Fels SB, Schwarzkopf MD (1975) The simplified exchange approximation. A new method for radiative transfer calculations. J Atmos Sci 32:1475–1488

    Article  Google Scholar 

  • Ferrier BS, Lin Y, Black T, Rogers E, Dimego G (2002) Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. In: Conference on numerical weather prediction. American Meteorological Society, San Antonio, pp 280–283 (preprint)

  • Fu Q (1996) An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J Clim 9:2058–2082. doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2

    Article  Google Scholar 

  • Hinkelman LM, Ackerman TP, Marchand RT (1999) An evaluation of NCEP Eta model predictions of surface energy budget and cloud properties by comparison with measured ARM data. J Geophys Res 104(D16):19535–19549

    Article  Google Scholar 

  • Hu YX, Stamnes K (1993) An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J Clim 6:728–742

    Article  Google Scholar 

  • Iacono MJ, Mlawer EJ, Clough SA, Morcrette JJ (2000) Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J Geophys Res 105(D11):14837–14980

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Jones PD, Harris I (2013) CRU TS3.21: Climatic Research Unit (CRU) Time-Series (TS) Version 3.21 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2012). University of East Anglia Climatic Research Unit, NCAS British Atmospheric Data Centre, 24th September 2013. doi:10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992

  • Kallos G, Nickovic S, Jovic D, Kakaliagou O, Papadopoulos A, Misirlis N, Boukas L, Mimikou N (1997) The ETA model operational forecasting system and its parallel implementation. In: Workshop on large-scale scientific computations, vol 1, Varna

  • Kallos G, Papadopoulos A, Katsafados P, Nickovic S (2006) Transatlantic Saharan dust transport: model simulation and results. J Geophys Res 111(D09204). doi:10.1029/2005JD006207

  • Karlsson KG, Riihelä A, Müller R, Meirink JF, Sedlar J, Stengel M, Lockhoff M, Trentmann J, Kaspar F, Hollmann R, Wolters E (2012) CLARA-A1: CM SAF CLouds, Albedo and RAdiation dataset from AVHRR data—edition 1—monthly means/daily means/pentad means/monthly histograms. Satell Appl Facil Clim Monit. doi:10.5676/EUM_SAF_CM/CLARA_AVHRR/V001

    Google Scholar 

  • Kushta J, Kallos G, Astitha M, Solomos S, Spyrou C, Mitsakou C, Lelieveld J (2014) Impact of natural aerosols on atmospheric radiation and consequent feedbacks with the meteorological and photochemical state of the atmosphere. J Geophys Res Atmos 119:1463–1491. doi:10.1002/2013JD020714

    Article  Google Scholar 

  • Lacis AA, Hansen JE (1974) A parameterization of the absorption of solar radiation in earth’s atmosphere. J Atmos Sci 31:118–133

    Article  Google Scholar 

  • Martins FR, Pereira EB, Yamashita C, Pereira SV, Mantelli Neto SL (2005) Base de dados climático-ambientais aplicados ao setor energético—Projeto SONDA. In: Simpósio Brasileiro de Sensoriamento Remoto, vol 12. SBSR, Goiânia, pp 3563–3570. CD-ROM, On-line. ISBN 85-17-00018-8. (INPE-12734-PRE/8024). http://urlib.net/ltid.inpe.br/sbsr/2004/11.19.16.26

  • McArthur LJB (2005) Baseline Surface Radiation Network (BSRN) Operations Manual Version 2.1. World Climate Research Programme, WCRP-121 WMO/TD-No. 1274

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Phys Space Phys 20:851–875

    Article  Google Scholar 

  • Mesinger F (1984) A blocking technique for representation of mountains in atmospheric models. Riv Meteor Aeronaut 44:195–202

    Google Scholar 

  • Mesinger F, Janjic ZI, Nickovic S, Gavrilov D, Deaven DG (1988) The step-mountain coordinate: model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon Weather Rev 116:1493–1518

    Article  Google Scholar 

  • Mesinger F, Chou SC, Gomes JL, Jovic D, Lyra AA, Bustamante JF, Bastos PR, Lazic L, Morelli S, Ristic I (2012) Veljovic K (2012) An upgraded version of Eta Model. Meteorol Atmos Phys 116(3–4):63–79. doi:10.1007/s00703-012-0182-z

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(16):663–16682

    Google Scholar 

  • Müller R, Pfeifroth U, Träger-Chatterjee C, Cremer R, Trentmann J, Hollmann R (2015) Surface Solar Radiation Data Set—Heliosat (SARAH)—Edition 1. Satell Appl Facil Clim Monit. doi:10.5676/EUM_SAF_CM/SARAH/V001

    Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861

    Article  Google Scholar 

  • Pesquero JF, Chou SC, Nobre CA, Marengo JA (2009) Climate downscaling over South America for 1961–1970 using the Eta Model. Theor Appl Climatol 99(1–2):75–93. doi:10.1007/s00704-009-0123-z

    Google Scholar 

  • Pincus R, Mlawer EJ, Oreopoulos L, Ackerman AS, Baek S, Brath M, Buehler SA, Cady-Pereira KE, Cole JNS, Dufresne MK, Li J, Manners J, Paynter DJ, Roehrig R, Sekiguchi M, Schwarzkopf DM (2015) Radiative flux and forcing parameterization error in aerosol-free clear skies. Geophys Res Lett 42:5485–5492

    Article  Google Scholar 

  • Richiaazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane parallel radiative transfer in the earth’s atmosphere. Bull Am Meteorol Soc 79(10):2101–2114

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Seluchi ME, Chou SC (2009) Synoptic patterns associated with landslide events in the Serra do Mar, Brazil. Theor Appl Climatol 98(1–2):67–77. doi:10.1007/s00704-008-0101-x

    Article  Google Scholar 

  • Spyrou C, Mitsakou C, Kallos G, Louka P, Vlastou G (2010) An improved limited area model for describing the dust cycle in the atmosphere. J Geophys Res 115:D17211. doi:10.1029/2009JD013682

    Article  Google Scholar 

  • Spyrou C, Kallos G, Mitsakou C, Athanasiadis P, Kalogeri C, Iacono M (2013) Radiative effects of desert dust on weather and regional climate. Atmos Chem Phys Discuss 13:1327–1365. doi:10.5194/acpd-13-1327-2013

    Article  Google Scholar 

  • Wild M (1999) Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings. J Geophys Res 104:27361–27371

    Article  Google Scholar 

  • Wild M, Ohmura A (1999) The role of clouds and the cloud-free atmosphere in the problem of underestimated absorption of solar radiation in GCM atmospheres. Phys Chem Earth (B) 24:261–268

    Article  Google Scholar 

  • Wild M, Ohmura A, Gilgen H, Roeckner E, Giorgetta M, Morcrette JJ (1998) The disposition of radiative energy in the global climate system: GCM-calculated versus observational estimates. Clim Dyn 14:853–869

    Article  Google Scholar 

  • Zamora RJ, Solomon S, Dutton EG et al (2003) Comparing MM5 radiative fluxes with observations gathered during the 1995 and 1999 Nashville southern oxidant studies. J Geophys Res. doi:10.1029/2002JD002122

    Google Scholar 

  • Zamora RJ, Dutton EG, Trainer M, McKeen SA, Wilczak JM, Hou YT (2005) The accuracy of solar irradiance calculations used in mesoscale numerical weather prediction. Mon Weather Rev 133:783–792

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially funded by CNPq Proc. No. 400792/2012-5, 457874/2014-7, and 308035/2013-5. D. de Andrade Campos would like to thank CAPES for the M.Sc. Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diêgo de Andrade Campos.

Additional information

Responsible Editor: F. Mesinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade Campos, D., Chou, S.C., Spyrou, C. et al. Eta model simulations using two radiation schemes in clear-sky conditions. Meteorol Atmos Phys 130, 39–48 (2018). https://doi.org/10.1007/s00703-017-0500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-017-0500-6

Keywords

Navigation