Skip to main content
Log in

Estimating wind velocity standard deviation values in the inertial sublayer from observations in the roughness sublayer

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

In air quality practice, observed data are often input to air pollution models to simulate the pollutants dispersion and to estimate their concentration. When the area of interest includes urban sites, observed data collected at urban or suburban stations can be available, and it can happen to use them for estimating surface layer parameters given in input to the models. In such case, roughness sublayer quantities may enter the parameterizations of the turbulence variables as if they were representative of the inertial sublayer, possibly leading to a not appropriate application of the Monin–Obukhov similarity theory. We investigate whether it is possible to derive suitable values of the wind velocity standard deviations for the inertial sublayer using the friction velocity and stability parameter observed in the roughness sublayer, inside a similarity-like analytical function. For this purpose, an analysis of sonic anemometer data sets collected in suburban and urban sites is proposed. The values derived through this approach are compared to actual observations in the inertial sublayer. The transferability of the empirical coefficients estimated for the similarity functions between different sites, characterized by similar or different morphologies, is also addressed. The derived functions proved to be a reasonable approximation of the actual data. This method was found to be feasible and generally reliable, and can be a reference to keep using, in air pollution models, the similarity theory parameterizations when measurements are available only in the roughness sublayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anfossi D, Oettl D, Degrazia G, Goulart A (2005) An analysis of sonic anemometer observations in low wind speed conditions. Bound Layer Meteor 114:179–203

    Article  Google Scholar 

  • Bendat JS, Piersol AG (2000) Random data: analysis and measurement procedures, 3rd edn. Wiley, Oxford, p 594

    Google Scholar 

  • Christen A, Vogt R (2004) Energy and radiation balance of a central European city. Int J Climatol 24(11):1395–1421

    Article  Google Scholar 

  • Christen A, van Gorsel E, Vogt R (2007) Coherent structures in urban roughness sublayer turbulence. Int J Climatol 27:1955–1968

    Article  Google Scholar 

  • Christen A, Rotach MW, Vogt R (2009) The budget of turbulent kinetic energy in the urban roughness sublayer. Bound Layer Meteorol 131:193–222

    Article  Google Scholar 

  • Feigenwinter C, Vogt R, Parlow E (1999) Vertical structure of selected turbulence characteristics above an Urban Canopy. Theor Appl Climatol 62:51–63

    Article  Google Scholar 

  • Ferrero E, Anfossi D, Richiardone R, Trini Castelli S, Mortarini L, Carretto E, Muraro M, Bande S, Bertoni D (2009) Urban turbulence project—the field experimental campaign. Internal Report ISAC-TO/02-2009, p 37, October 2009, Torino, Italy

  • Fisher B, Joffre S, Kukkonen J, Piringer M, Rotach MW, Schatzmann M, Eds. (2005) Meteorology applied to urban air pollution problems. Final Report COST Action 715. Demetra LtD Publishers, Bulgaria. ISBN 954-9526-30-5, p 275

  • Fisher B, Kukkonen J, Piringer M, Rotach MW, Schatzmann M (2006) Meteorology applied to urban air pollution problems: concepts from COST 715. Atmos Chem Phys 6:555–564

    Article  Google Scholar 

  • Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Bound Layer Meteorol 119:431–447

    Article  Google Scholar 

  • Fortuniak K, Pawlak W, Siedlecki M (2013) Integral turbulence statistics over a Central European City Centre. Bound Layer Meteorol 146:257–276

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292

    Article  Google Scholar 

  • Grimmond CSB, King TS, Roth M, Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Bound Layer Meteorol 89:1–24

    Article  Google Scholar 

  • Hanna SR (1982) Applications in air pollution modelling. In: Nieuwstadt F, Van Dop H (eds) Atmospheric turbulence and air pollution modelling. Reidel, Dordrecht, pp 275–310

    Google Scholar 

  • Klipp CJ, Mahrt L (2004) Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 130:2087–2103

    Article  Google Scholar 

  • Luhar AK (2012) Lagrangian particle modeling of dispersion in light winds. In: Lin J, Brunner D, Gerbig C, Stohl A, Luhar A, Webley P et al (eds) Lagrangian modeling of the atmosphere. American Geophysical Union, Washington, DC, pp 37–51. doi:10.1029/2012GM001264

    Google Scholar 

  • Luhar AK, Venkatram A, Lee SM (2006) On relationships between urban and rural near-surface meteorology for diffusion applications. Atmos Environ 40:6541–6553

    Article  Google Scholar 

  • Mahrt L (2010) Computing turbulent fluxes near the surface: needed improvements. Agric For Meteorol 150:501–509

    Article  Google Scholar 

  • McMillen R (1988) An eddy correlation technique with extended applicability to non-simple terrain. Bound Layer Meteorol 43:231–245

    Article  Google Scholar 

  • Moraes OLL, Acevedo OC, Degrazia GA, Anfossi D, Da Silva R, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39:3103–3112

    Article  Google Scholar 

  • Mortarini L, Ferrero E, Richiardone R, Falabino S, Anfossi D, Trini Castelli S, Carretto E (2009) Assessment of dispersion parameterizations through wind data measured by three sonic anemometers in an urban canopy. Adv Sci Res 3:91–98

    Article  Google Scholar 

  • Mortarini L, Ferrero E, Falabino S, Trini Castelli S, Richiardone R, Anfossi D (2013) Low-frequency processes and turbulence structure in a perturbed boundary layer. Q J R Meteorol Soc 139:1059–1072

    Article  Google Scholar 

  • Pahlow M, Parlange MB, Porte-Agel F (2001) On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound Layer Meteorol 99:225–248

    Article  Google Scholar 

  • Princevac M, Venkatram A (2007) Estimating micrometeorological inputs for modeling dispersion in urban areas during stable conditions. Atmos Environ 41:5345–5356

    Article  Google Scholar 

  • Qian W, Princevac M, Venkatram A (2010) Using temperature fluctuation measurements to estimate meteorological inputs for modelling dispersion during convective conditions in urban areas. Bound Layer Meteorol 135:269–289

    Article  Google Scholar 

  • Rotach MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 33:4001–4008

    Article  Google Scholar 

  • Rotach MW (2001) Simulation of urban-scale dispersion using a lagrangian stochastic dispersion model. Boundary-Layer Meteorol 99:379–410

    Article  Google Scholar 

  • Rotach MW, Gryning SE, Batchvarova E, Christen A, Vogt R (2004) Pollutant dispersion close to an urban surface—the BUBBLE tracer experiment. Meteorol Atm Phys 87:39–56

    Article  Google Scholar 

  • Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning SE, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Ruffieux D, Salmond J, Schatzmann M, Vogt J (2005) BUBBLE—an urban boundary layer meteorology project. Theor Appl Climatol 81:231–261

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:1941–1990

    Article  Google Scholar 

  • Trini Castelli S, Falabino S (2013) Parameterization of the wind velocity fluctuation standard deviations in the surface layer in low-wind conditions. Meteorol Atmos Phys 119:91–107

    Article  Google Scholar 

  • Trini Castelli S, Falabino S, Mortarini L, Ferrero E, Anfossi D, Richiardone R (2011) Analysis of urban boundary-layer turbulence on the basis of an experimental campaign in Turin city—UTP project. In: Proceedings of the 14th international conference on harmonisation within atmospheric dispersion modelling for regulatory purposes, Kos, Greece, 2–6 October 201, pp 414–417

  • Trini Castelli S, Falabino S, Mortarini L, Ferrero E, Richiardone R, Anfossi D (2014a) Experimental investigation of the surface layer parameters in low wind conditions in a suburban area. Q J R Meteorol Soc 140:2023–2036

    Article  Google Scholar 

  • Trini Castelli S, Falabino S, Anfossi D (2014b) Effect of the turbulence parameterizations on the simulation of pollutant dispersion with the RMS modelling system. In: Steyn DG, Builtjes P (eds) Air pollution modeling and its application XXII. Springer, Berlin, pp 529–534

    Chapter  Google Scholar 

  • Venkatram A, Princevac M (2008) Using measurements in urban areas to estimate turbulent velocities for modelling dispersion. Atmos Environ 42:3833–3841

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Oc Tech 20:660–672

    Article  Google Scholar 

  • Wilson JD (2008) Monin–Obukhov functions for standard deviations of velocity. Bound Layer Meteorol 129:353–369

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Prof. Mathias Rotach and Prof. Andreas Christen for providing us the BUBBLE data sets used in this work and for their precious support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Trini Castelli.

Additional information

Responsible Editor: C. Simmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falabino, S., Trini Castelli, S. Estimating wind velocity standard deviation values in the inertial sublayer from observations in the roughness sublayer. Meteorol Atmos Phys 129, 83–98 (2017). https://doi.org/10.1007/s00703-016-0457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-016-0457-x

Keywords

Navigation