Skip to main content
Log in

The impact of latent heating on the location and strength of the tropical easterly jet

Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The tropical easterly jet (TEJ) is a prominent atmospheric circulation feature observed during the Asian summer monsoon. It is generally assumed that sensible heating over the Tibetan Plateau directly influences the location of the TEJ. However, other studies have suggested the importance of latent heating in determining the jet location. In this paper, the relative importance of latent heating on the maintenance of the TEJ is explored through simulations with a general circulation model. The simulation of the TEJ by the Community Atmosphere Model, version 3.1 is discussed in detail. These simulations showed that the location of the TEJ is well correlated with the location of the precipitation. Significant zonal shifts in the location of the precipitation resulted in similar shifts in the zonal location of the TEJ. These zonal shifts had minimal effect on the large-scale structure of the jet. Further, provided that precipitation patterns were relatively unchanged, orography did not directly impact the location of the TEJ. These changes were robust even with changes in the cumulus parameterization. This suggests the potential important role of latent heating in determining the location and structure of the TEJ. These results were used to explain the significant differences in the zonal location of the TEJ in the years 1988 and 2002. To understand the contribution of the latitudinal location of latent heating on the strength of the TEJ, aqua-planet simulations were carried out. It has been shown that for similar amounts of net latent heating, the jet is stronger when heating is in the higher tropical latitudes. This may partly explain the reason for the jet to be very strong during the JJA monsoon season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abish B, Joseph PV, Johannessen OM (2013) Weakening trend of the tropical easterly jetstream of the boreal summer monsoon season 1950–2009. J Clim 26:9408–9414. doi:10.1175/JCLI-D-13-00440.1

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Besson L, Lemaître Y (2014) Mesoscale convective systems in relation to African and tropical easterly tets. Mon Weather Rev 142:3224–3242

    Article  Google Scholar 

  • Bhat GS (2006) The Indian drought of 2002—a sub-seasonal phenomenon? Q J R Meteorol Soc 132(621):2583–2602. doi:10.1256/qj.05.13

    Article  Google Scholar 

  • Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–222. doi:10.1038/nature08707

    Article  Google Scholar 

  • Bretherton CS, Peters ME, Back LE (2004) Relationships between water vapor path and precipitation over the tropical oceans. J Clim 17:1517–1528

    Article  Google Scholar 

  • Briegleb BP (1992) Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J Geophys Res 97(D7):7603–7612. doi:10.1029/92JD00291

    Article  Google Scholar 

  • Camberlin P (1995) June-september rainfall in north-eastern Africa and atmospheric signals over the tropics. Int J Climatol 15(7):773–783. doi:10.1002/joc.3370150705

    Article  Google Scholar 

  • Chakraborty A (2004) Impact of orography on the simulation of monsoon climate in a general circulation model. PhD thesis, Indian Institute of Science, Bangalore

  • Chakraborty A, Nanjundiah RS, Srinivasan J (2002) Role of Asian and African orography in Indian summer monsoon. Geophys Res Lett 29(20):50-1–50-4. doi:10.1029/2002GL015522

    Article  Google Scholar 

  • Chakraborty A, Nanjundiah RS, Srinivasan J (2008) Impact of African orography and the Indian summer monsoon on the low-level Somali jet. Int J Climatol 29(7):983–992

    Article  Google Scholar 

  • Chen TC, van Loon H (1987) Interannual variation of the tropical easterly jet. Mon Weather Rev 115:1739–1759. doi:10.1175/1520-0493(1987)115<1739:IVOTTE>2.0.CO;2

  • Davis RN, Chen YW, Miyahara S, Mitchell NJ (2012) The climatology, propagation and excitation of ultra-fast Kelvin waves as observed by meteor radar, Aura MLS, TRMM and in the Kyushu-GCM. Atmos Chem Phys 12:1865–1879. doi:10.5194/acp-12-1865-2012

    Article  Google Scholar 

  • Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24:793–807. doi:10.1007/s00382-004-0488-8

    Article  Google Scholar 

  • Flohn H (1965) Thermal effects of the Tibetan Plateau during the Asian monsoon season. Correspondence, University of Bonn

  • Flohn H (1968) Contributions to a meteorology of the Tibetan highland. Atmospheric science paper 130. Colorado State University, Fort Collins

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462

    Article  Google Scholar 

  • Gregory D, Kershaw R, Inness PM (1997) Parametrization of momentum transport by convection. II: Tests in single-column and general circulation models. Q J R Meteorol Soc 123:1153–1183

    Article  Google Scholar 

  • Hack JJ (1994) Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J Geophys Res 99(D3):5551–5568. doi:10.1029/93JD03478

    Article  Google Scholar 

  • Hoskins BJ, Rodwell MJ (1995) A model of the Asian summer monsoon. Part 1: The global scale. J Atmos Sci 52:1329–1340. doi:10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2

  • Hulme M, Tosdevin N (1989) The tropical easterly jet and Sudan rainfall: a review. Theor Appl Climatol 39(4):179–187. doi:10.1007/BF00867945

    Article  Google Scholar 

  • Hurrell JW, Hack JJ, Phillips AS, Caron J, Yin J (2006) The dynamical simulation of the Community Atmosphere Model version 3 (CAM3). J Clim 19:2162–2183. doi:10.1175/JCLI3762.1

    Article  Google Scholar 

  • Jain DK, Chakraborty A, Nanjundiah RS (2011) On the role of cloud adjustment time scale in simulating precipitation with relaxed Arakawa–Schubert convection scheme. Meteorol Atmos Phys 115:1–123. doi:10.1007/s00703-011-0170-8

    Article  Google Scholar 

  • Jingxi L, Yihui D (1989) Climatic study on the summer tropical easterly jet at 200 hPa. Adv Atmos Sci 6(2):215–226. doi:10.1007/BF02658017

    Article  Google Scholar 

  • Joseph PV (2012) Onset, advance and withdrawal of monsoon. In: Tyagi A, Asnani GC, De US, Hatwar HR, Mazumdar AB (eds) Monsoon monograph, vol 1. India Meteorological Department. http://www.imd.gov.in/section/nhac/dynamic/MM1.pdf

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

  • Koteswaram P (1958) The easterly jet stream in the tropics. Tellus 10(1):43–57. doi:10.1111/j.2153-3490.1958.tb01984.x

    Article  Google Scholar 

  • Krishnamurti TN (1971) Observational study of the tropical upper tropospheric motion field during the northern hemisphere summer. J Appl Meteorol 10:1066–1096

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Tompkins AM, Feudale L, Rutic P, Aquila D (2009) A Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Q J R Meteorol Soc 135(640):569–579. doi:10.1002/qj.406

    Article  Google Scholar 

  • Lafore JP, Moncrieff MW (1989) A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J Atmos Sci 46:521–544

    Article  Google Scholar 

  • Liu X, Yin ZY (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 183:223–245

    Article  Google Scholar 

  • Liu Y, Hoskins BJ, Blackburn M (2007) Impact of Tibetan orography and heating on the summer flow over Asia. J Meteorolog Soc Japan 85B:1–19. doi:10.2151/jmsj.85B.1

    Article  Google Scholar 

  • Mishra S (2010) Sensitivity of the simulated precipitation to changes in convective relaxation time scale. Ann Geophys 28:1827–1846. doi:10.5194/angeo-28-1827-2010

    Article  Google Scholar 

  • Mishra SK (2008) The impact of changes in temporal resolution and convective parameterization on the simulation of tropical climate in NCAR CAM3 GCM. PhD thesis, Indian Institute of Science, Bangalore

  • Nicholson SE, Barcilon AI, Challa M, Baum J (2007) Wave activity on the tropical easterly jet. J Atmos Sci 64:2756–2763. doi:10.1175/JAS3946.1

    Article  Google Scholar 

  • Raghavan K (1973) Tibetan anticyclone and tropical easterly jet. Pure Appl Geophys 110(1):2130–2142. doi:10.1007/BF00876576

    Article  Google Scholar 

  • Ramanathan V, Downey P (1986) A nonisothermal emissivity and absorptivity formulation for water vapor. J Geophys Res 91:8649–8666. doi:10.1029/JD091iD08p08649

    Article  Google Scholar 

  • Ramesh KJ, Mohanty UC, Rao PLS (1996) A study on the distinct features of the Asian summer monsoon during the years of extreme monsoon activity over India. Meteorol Atmos Phys 59:173–183

    Article  Google Scholar 

  • Rao BRS, Rao DVB, Rao VB (2004) Decreasing trend in the strength of tropical easterly jet during the Asian summer monsoon season and the number of tropical cyclonic systems over Bay of Bengal. Geophys Res Lett 31

  • Rasch PJ, Kristjánsson JE (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Clim 11:1587–1614. doi:10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2

  • Raymond DJ, Blyth AM (1986) A stochastic mixing model for non-precipitating cumulus clouds. J Atmos Sci 43:2708–2718

    Article  Google Scholar 

  • Raymond DJ, Blyth AM (1992) Extension of the stochastic mixing model to cumulonimbus clouds. J Atmos Sci 49:1968–1983

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP (2003) Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625. doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2

  • Richter JH, Rasch PJ (2008) Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3. J Clim 21:1487–1499

    Article  Google Scholar 

  • Sathiyamoorthy V (2005) Large scale reduction in the size of the tropical easterly jet. Geophys Res Lett 32(14):L14802. doi:10.1029/2005GL022956

    Article  Google Scholar 

  • Sikka DR (2003) Evaluation of monitoring and forecasting of summer monsoon over India and a review of monsoon drought of 2002. Proc Indian Natl Sci Acad Part A 69(5):479–504

    Google Scholar 

  • Slingo A (1989) A GCM parameterization for the shortwave radiative properties of clouds. J Atmos Sci 46:1419–1427. doi:10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Wang B (2006) The Asian monsoon. Springer

  • Webster PJ, Fasullo J (2003) Monsoon: dynamical theory. In: Encyclopedia of atmospheric sciences. Academic Press, London, pp 1370–1385

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558. doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

  • Ye D (1981) Some characteristics of the summer circulation over the Qighai-Xizang (Tibet) Plateau and its neighborhood. Bull Am Meteorol Soc 62:14–19. doi:10.1175/1520-0477(1981)062<0014:SCOTSC>2.0.CO;2

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos Ocean 33(3):407–446. doi:10.1080/07055900.1995.9649539

    Article  Google Scholar 

  • Zhang M, Bretherton CS, Hack JJ, Rasch PJ (2003) A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model CAM2. J Geophys Res 108(D1):ACL 10-1–ACL 10-11. doi:10.1029/2002JD002523

    Article  Google Scholar 

  • Zhang Q, Wu G, Qian Y (2002) The bimodality of the 100 hPa South Asia high and its relationship to the climate anomaly over East Asia in summer. J Meteorol Soc Jpn 80(4):733–744. doi:10.2151/jmsj.80.733

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers for their insightful comments. NCEP Reanalysis data used in this study is provided by the NOAA/OAR/ESRL PSD, Boulder, CO, USA, from their Web site at http://www.esrl.noaa.gov/psd/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Rao.

Additional information

Responsible Editor: J. T. Fasullo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S., Srinivasan, J. The impact of latent heating on the location and strength of the tropical easterly jet. Meteorol Atmos Phys 128, 247–261 (2016). https://doi.org/10.1007/s00703-015-0407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-015-0407-z

Keywords

Navigation