Skip to main content

Advertisement

Log in

Simulation of biomass burning aerosols mass distributions and their direct and semi-direct effects over South Africa using a regional climate model

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

In this study, we examine the mass distributions, direct and semi-direct effects of different biomass burning aerosols (BBAs) over South Africa using the 12-year runs of the Regional Climate Model (RegCM4). The results were analyzed and presented for the main BB season (July–October). The results show that Mpumalanga, KwaZulu Natal and the eastern parts of Limpopo are the main local source areas of BBAs in South Africa. In comparison to carbonaceous aerosols, BB-induced sulfate aerosol mass loading and climatic effects were found to be negligible. All carbonaceous aerosols reduce solar radiation at the surface by enhancing local atmospheric radiative heating. The climatic feedback caused by BBAs, resulted in changes in background aerosol concentrations. Thus, on a regional scale, climatic effects of BBAs were also found in areas far away from the BBA loading zones. The feedback mechanisms of the climate system to the aerosol radiative effects resulted in both positive and negative changes to the low-level columnar averaged net atmospheric radiative heating rate (NAHR). Areas that experienced an NAHR reduction showed an increase in cloud cover (CC). During the NAHR enhancement, CC over arid areas decreased; whereas CC over the wet/semi-wet regions increased. The changes in surface temperature (ST) and surface sensible heat flux are more closely correlated with BBA semi-direct effects induced CC alteration than their direct radiative forcing. Furthermore, decreases (or increases) in ST, respectively, lead to the reductions (and enhancements) in boundary layer height and the vice versa on surface pressure. The direct and semi-direct effects of BBAs also jointly promoted a reduction and rise in surface wind speed that was spatially highly variable. Overall, the results suggest that the CC change induced by the presence of radiatively interactive BBAs is important to determine alterations in other climatic variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen RJ, Sherwood SC (2010) Aerosol-cloud semi-direct effect and land-sea temperature contrast in a GCM. Geophys Res Lett 37:L07702. doi:10.1029/2010GL042759

    Article  Google Scholar 

  • Andreae MO, Gelencser A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148. doi:10.5194/acp-6-3131-2006

    Article  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15:955–966

    Article  Google Scholar 

  • Barbosa PM et al (1999) An assessment of vegetation fire in africa (1981–1991): burned areas, burned biomass, and atmospheric emissions. Global Biogeochem Cycles 13:933–950

    Article  Google Scholar 

  • Boer GJ (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8:225–239. doi:10.1007/BF00198617

    Article  Google Scholar 

  • Bond TC et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552. doi:10.1002/jgrd.50171

    Article  Google Scholar 

  • Cooke WF et al (1999) Construction of a 1 × 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J Geophys Res 104:22137–22162

    Article  Google Scholar 

  • Douville H et al (2002) Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Clim Dyn 20:45–68

    Article  Google Scholar 

  • Duncan BN et al (2003) Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J Geophys Res 108(D2):4100. doi:10.1029/2002JD002378

    Article  Google Scholar 

  • Edwards DP et al (2006) Satellite-observed pollution from Southern Hemisphere biomass burning. J Geophys Res 111:D14312. doi:10.1029/2005JD006655

    Article  Google Scholar 

  • Feingold G et al (2005) On smoke suppression of clouds in Amazonia. Geophys Res Lett 32:L02804. doi:10.1029/2004GL021369

    Article  Google Scholar 

  • Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Camb.Univ. Press, Camb., United Kingdom and New York, NY, USA

  • Fraser RH et al (2000) Hotspot and NDVI differencing synergy (HANDS): a new technique for burned area mapping over boreal forest. Remote Sens Environ 74:362–376

    Article  Google Scholar 

  • Freiman MT, Piketh SJ (2003) Air transport into and out of the industrial Highveld region of South Africa. J Appl Meteorol 42:994–1002. doi:10.1175/1520-0450(2003)042<0994:ATIAOO>2.0.CO2

    Article  Google Scholar 

  • Giglio L et al (2009) An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens Environ 113:408–420. doi:10.1016/j.rse.2008.10.006

    Article  Google Scholar 

  • Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Hansen J et al (1997) Radiative forcing and climate response. J Geophys Res 102(D6):6831–6864. doi:10.1029/96JD03436

    Article  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38(4):513–543. doi:10.1029/1999RG000078

    Article  Google Scholar 

  • Helas G, Pienaar JJ (1996) Biomass burning emissions. In: Held G, Gore BJ, Surridge AD, Tosen GR, Turner CR, Walmsley RD (eds) Air pollution and its impacts on the South African highveld, Chap 3, vol 12–15. Environ. Sci. Assoc., Cleveland, p 144

  • Jacobson MZ, Kaufman YJ (2006) Wind reduction by aerosol particles. Geophys Res Lett 33:L24814. doi:10.1029/2006GL027838

    Article  Google Scholar 

  • Jiang H, Feingold G (2006) Effect of aerosol on warm convective clouds: aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. J Geophys Res 111:D01202. doi:10.1029/2005JD006138

    Google Scholar 

  • Kaufman YJ, Koren I (2006) Smoke and pollution aerosol effect on cloud cover. Science 313:655–658

    Article  Google Scholar 

  • Khoder MI (2002) Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 49:675–684

    Article  Google Scholar 

  • Koch D, Genio AD (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10:7685–7696. doi:10.5194/acp-10-7685-2010

    Article  Google Scholar 

  • Koren I et al (2004) Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303(5662):1342–1345. doi:10.1126/science.1089424

    Article  Google Scholar 

  • Lamarque J-F et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039. doi:10.5194/acp-10-7017-2010

    Article  Google Scholar 

  • Langmann B et al (2009) Vegetation fire emissions and their impact on air pollution and climate. Atmos Environ 43:107–116

    Article  Google Scholar 

  • Lau KM et al (2009) A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Ann Geophys 27:4023–4037

    Article  Google Scholar 

  • Lewis AC et al (2013) The influence of biomass burning on the global distribution of selected non-methane organic compounds. Atmos Chem Phys 13:851–867. doi:10.5194/acp-13-851-2013

    Article  Google Scholar 

  • Liousse C et al (2004) Deriving global quantitative estimates for spatial and temporal distributions of biomass burning emissions. In: Granier C, Artaxo P, Reeves C (eds) Emissions of atmospheric trace compounds. Kluwer Academic Publishers, Dordrecht, p 544

  • Liousse C et al (2010) Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols. Atmos Chem Phys 25(10):9631–9646. doi:10.5194/acp-10-9631-2010

    Article  Google Scholar 

  • Magi BI et al (2009) Evaluation of tropical and extratropical Southern Hemisphere African aerosol properties simulated by a climate model. J Geophys Res 114:D14204. doi:10.1029/2008JD011128

    Article  Google Scholar 

  • Mallet M et al (2009) Impact of dust aerosols on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during March 2006. Atmos Chem Phys 9:7143–7160

    Article  Google Scholar 

  • Markowicz KM et al (2003) Influence of relative humidity on aerosol radiative forcing: an ACE-Asia experiment perspective. J Geophys Res 108:8662. doi:10.1029/2002JD003066,D23

    Article  Google Scholar 

  • Menon S et al (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  Google Scholar 

  • Miller RL, Tegen I (1998) Climate response to soil dust aerosols. J Climate 11:3247–3267

    Article  Google Scholar 

  • Miller RL et al (2004a) Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J Geophys Res 109:D04203. doi:10.1029/2003JD004085

    Google Scholar 

  • Miller RL et al (2004b) Feedback upon dust emission by dust radiative forcing through the planetary boundary layer. J Geophys Res 109:D24209. doi:10.1029/2004JD004912

    Article  Google Scholar 

  • Oshima N et al (2012) Wet removal of black carbon in Asian outflow: aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign. J Geophys Res 117:D03204. doi:10.1029/2011JD016552

    Google Scholar 

  • Perlwitz J, Miller RL (2010) Cloud cover increase with increasing aerosol absorptivity: a counterexample to the conventional semi-direct aerosol effect. J Geophys Res 115:D08203. doi:10.1029/2009JD012637

    Google Scholar 

  • Piketh SJ et al (1996) Regional scale impacts of biomass burning emissions over southern Africa. In: Levine JS (ed) Biomass burning and global change. MIT Press, Cambridge, pp 320–326

  • Qian Y, Giorgi F (1999) Interactive coupling of regional climate and sulfate aerosol models over eastern Asia. J Geophys Res 104(D6):6477–6499. doi:10.1029/98JD02347

    Article  Google Scholar 

  • Qian Y et al (2001) Simulation of anthropogenic sulphur over east Asia with a regional coupled chemistry-climate model. Tellus 53B:171–191

    Article  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    Article  Google Scholar 

  • Ramanathan V, Ramana MV (2005) Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl Geophys 162:1609–1626. doi:10.1007/s00024-005-2685-8

    Article  Google Scholar 

  • Ramanathan V et al (2001) Aerosol, climate, and hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Ramanathan V et al (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci 102:5326–5333

    Article  Google Scholar 

  • Randles CA, Ramaswamy V (2010) Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: a Geophysical Fluid Dynamics Laboratory GCM sensitivity study. Atmos Chem Phys 10:9819–9831

    Article  Google Scholar 

  • Reid JS et al (2004) Real-time monitoring of South American smoke particle emissions and transport using a coupled remote sensing/box-model approach. Geophys Res Lett 31:L06107. doi:10.1029/2003GL018845

    Google Scholar 

  • Reid JS et al (2009) Global monitoring and forecasting of biomass-burning smoke: description and lessons from the Fire Locating and Modeling of Burning Emissions (FLAMBE) program. J Sel Topics Appl Earth Obs Rem Sens 2:144–162

    Article  Google Scholar 

  • Roberts G et al (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: application to southern Africa using geostationary SEVIRI imagery. J Geophys Res 110:D21111. doi:10.1029/2005JD006018

    Article  Google Scholar 

  • Roberts G et al (2009) Annual and diurnal african biomass burning temporal dynamics. Biogeosciences 6:849–866. doi:10.5194/bg-6-849-2009

    Article  Google Scholar 

  • Roelofs GJ et al (2001) Analysis of regional budgets of sulfur species modeled for the COSAM exercise. Tellus Ser B 53(5):673–694

    Article  Google Scholar 

  • Scholes RJ et al (1996) Emissions of trace gases and aerosol particles due to vegetation burning in southern hemisphere Africa. J Geophys Res 101(D19):23677–23682. doi:10.1029/95JD02049

    Article  Google Scholar 

  • Sinha P et al (2003) Distributions of trace gases and aerosols during the dry biomass burning season in southern Africa. J Geophys Res 108(D17):4536. doi:10.1029/2003JD003691

    Article  Google Scholar 

  • Solmon F et al (2006) Development of a regional anthropogenic aerosol model for climate studies: application and validation over a European/African domain. Tellus B 58:51–72

    Article  Google Scholar 

  • Stier P et al (2007) Aerosol absorption and radiative forcing. Atmos Chem Phys 7:5237–5261. doi:10.5194/acp-7-5237-2007

    Article  Google Scholar 

  • Swap RJ et al (2002) The Southern African Regional Science Inititatve (SAFARI 2000): overview of the dry season field campaign. S Afr J Sci 98:125–130

    Google Scholar 

  • Swap RJ et al (2003) Africa burning: a thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000). J Geophys Res 108:8465. doi:10.1029/2003JD003747

    Article  Google Scholar 

  • Tesfaye M et al (2011b) Effective single scattering albedo estimation using regional climate model. In: South African Society for Atmospheric Sciences 27th Annual Conference 22–23 September 2011: The Interdependent Atmosphere, Land and Ocean, pp 53–54

  • Tesfaye M et al (2013a) Evaluation of regional climatic model simulated aerosol optical properties over South Africa using ground-based and satellite observations. ISRN Atmos Sci 2013:17. Article ID 237483. doi:10.1155/2013/237483

  • Tesfaye M et al (2013b) Simulation of anthropogenic aerosols mass distributions and their direct and semi-direct effects over South Africa using RegCM4. Int J Climatol (in-review)

  • Tesfaye M et al (2011) Aerosol climatology over South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR) data. J Geophys Res 116:D20216. doi:10.1029/2011JD016023

    Article  Google Scholar 

  • Torres O et al (2010) OMI and MODIS observations of the anomalous 2008–2009 Southern Hemisphere biomass burning seasons Atmos. Chem Phys 10:2505–2513

    Google Scholar 

  • Tummon F (2011) Direct and semi-direct aerosol effects on the southern African regional climate during the austral winter season: PhD thesis. University of Cape Town, South Africa

  • TummonF et al (2010) Simulation of the direct and semi-direct aerosol effects on the southern Africa regional climate during the biomass burning season. J Geophys Res 115(D19). doi:10.1029/2009JD013738

  • van der Werf GR et al (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441. doi:10.5194/acp-6-3423-2006

    Article  Google Scholar 

  • van der Werf GR et al (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735. doi:10.5194/acp-10-11707-2010

    Article  Google Scholar 

  • Winkler J et al (2008) Evidence for large scale transport of biomass burning aerosols from sunphotometry at a remote South African site. Atmos Environ 42:5569–5578. doi:10.1016/j.atmosenv.2008.03.031

    Article  Google Scholar 

  • Yu H et al (2002) Radiative effects of aerosols on the evolution of the atmospheric boundary layer. J Geophys Res 107(D12):4142. doi:10.1029/2001JD000754

    Article  Google Scholar 

  • Yue X et al (2010a) Direct climatic effect of dust aerosol in the NCAR Community Atmosphere Model Version 3 (CAM3). Adv Atmos Sci 27(2):230–242. doi:10.1007/s00376-009-8170-z

    Article  Google Scholar 

  • Yue X et al (2010b) Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust–climate interactions. J Geophys Res 115:D04201. doi:10.1029/2009JD012063

    Google Scholar 

  • Zhang Y(2008) The radiative effect of aerosols from biomass burning on the transition from dry to wet season over the amazon as tested by a regional climate model: PhD thesis. Georgia Institute of Technology, United States

  • Zhang RY et al (2008) Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc Natl Acad Sci USA 105(30):10291–10296

    Article  Google Scholar 

  • Zhang X et al (2012) Near-real-time global biomass burning emissions product from geostationary satellite constellation. J Geophys Res 117:D14201. doi:10.1029/2012JD017459

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Addis Ababa University, Department of Physics, for providing computational facilities. For the accessibility of RegCM model the authors are thankful to the International Centre for Theoretical Physics (ICTP). We are also indebted to Teresa Faleschini, Tamene Mekonnen, Fiona Tummon and Addisu Gezahegn, for their valuable assistances. Authors thank Ameeth Sharma for proof reading and language correction in the manuscript. This work was supported by African Laser Centre and NRF bi-lateral research grant (UID: 68688/65086), in addition to CSIR National Laser Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tesfaye.

Additional information

Responsible editor: J. Fasullo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesfaye, M., Botai, J., Sivakumar, V. et al. Simulation of biomass burning aerosols mass distributions and their direct and semi-direct effects over South Africa using a regional climate model. Meteorol Atmos Phys 125, 177–195 (2014). https://doi.org/10.1007/s00703-014-0328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-014-0328-2

Keywords

Navigation