Skip to main content
Log in

GPS-derived precipitable water vapour and its comparison with MODIS data for Almora, Central Himalaya, India

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The present study is an attempt to analyse the precipitable water vapour (PWV) derived from Global Positioning System (GPS) and observed meteorological data over Almora, Central Himalayan Region. The PWV values derived using GPS study is compared with the corresponding moderate resolution imaging spectro-radiometer (MODIS) data. The statistical analysis reveals a positive correlation between both methods. Moderate resolution imaging spectroradiometer near-infrared (MODIS NIR) clear column water vapour product shows a higher correlation (R 2 = 90–93 %) with GPS-derived precipitable water vapour on annual scale as compared to the seasonal scale (R 2 = 62–87 %). MODIS is found to be overestimating in NIR clear column where the magnitude of bias and RMSE show systematic changes from season to season. Monsoon is an important phenomenon in the Indian weather context and holds significant importance in Central Himalayan ecosystem. The monthly and seasonal variation in precipitable water vapour is related with monsoon onset in the region. Diurnal variations in precipitable water vapour are studied with other meteorological data over Almora during dry and wet season. The precipitable water vapour had minimum value in the morning, increases in the afternoon to evening and again decreases to the midnight in both the dry and wet seasons. These results suggest that diurnal variation of water vapour is caused by the transport of water vapour by thermally induced local circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agustan (2004) Strategies for estimating atmospheric water vapour using ground based GPS receiver in Australia. M. Sc. Thesis, Curtin University of Technology, Australia

  • Bai Z, Feng Y (2003) GPS water vapor estimation using interpolated surface meteorological data from Australian automatic weather stations. J Global Position Syst 2:83–89

    Article  Google Scholar 

  • Berg H (1948) Allgemeine meteorology. Dümmlers, Bonn

    Google Scholar 

  • Bevis M, Businger S, Herring TA et al (1992) GPS Meteorology: Remote sensing of atmospheric water vapour using the Global Positioning System. J Geophys Res 97:15787–15801

    Article  Google Scholar 

  • Bevis M, Businger S, Chiswell S (1994) GPS Meteorology: mapping zenith wet delays on to precipitable water. J App Meteor 33:379–386

    Article  Google Scholar 

  • Davis JL, Herring TA, Shapiro II et al (1985) Geodesy by radio interferometer: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20:1593–1607

    Article  Google Scholar 

  • Duan J, Bevis M, Fang P et al (1996) GPS Meteorology: direct estimation of the absolute value of precipitable water. J App Meteor 35:830–838

    Article  Google Scholar 

  • Elegered G, Davis JL, Herring TA et al (1991) Geodesy by radio interferometry: water vapour radiometry for estimation of the wet delay. J Geophys Res 96:6541–6555

    Article  Google Scholar 

  • Gao BC, Kaufman YJ (1998) The MODIS Near-IR water vapor algorithm. Products: MOD05, MOD08. ATBD-MOD-03

  • Gautam R, Hsu NC, Tsay SC et al (2011) Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmos Chem Phys 11:12841–12863

    Article  Google Scholar 

  • Guerova G (2003) Derivation of Integrated Water Vapor (IWV) from the ground—based GPS estimates of Zenith Total Delay (ZTD). IAP Research Report No. 2003–08. Dept. of Microwave Physics, Institute of Applied Physics, University of Bern, Bern, Switzerland

  • Igondova M (2009) Analysis of precision and accuracy of Precipitable Water Vapour derived from GPS observations. Contributions Geophys Geodesy 39(2):121–132

    Google Scholar 

  • Jade S, Vijayan MSM, Gaur VK et al (2005) Estimates of precipitable water vapor from GPS data in Indian subcontinent. J Atmos Sol Terr Phys 67(6):623–635

    Article  Google Scholar 

  • Kimura F, Kuwagata T (1995) Horizontal heat fluxes over complex terrain computed using a simple mixed layer model and a numerical model. J Appl Meteorol 34:549–558

    Article  Google Scholar 

  • Klein Baltink H, Derks HJP, van Lammeren ACAP et al (1999) GPS Water Vapor Meteorology, Beleids Commissie Remote Sensing (BCRS), Chapter 2: Water Vapor from GPS Trophosheric Delay Estimates, pp. 3–11

  • Kumar S, Singh AK, Prasad AK et al (2009) Annual variability of water vapor from GPS and MODIS data over the Indo-Gangetic Plains. J Ind Geophys Union 13(1):17–23

    Google Scholar 

  • Kurekar RG, Kuraishi MA (2012) Determination of precipitable water vapour using Global Positioning System. Int J Geol Earth Environ Sci 2(2):51–57

    Google Scholar 

  • Kuwagata T, Numaguti A, Endo N (2001) Diurnal variation of water vapour over the Central Tibetan Plateau during summer. J Meteor Soc Japan 79:401–418

    Article  Google Scholar 

  • Li Z, Muller J, Cross P (2003) Comparison of precipitable water vapour derived from radiosonde, GPS and Moderate Resolution Imaging Spectro-radiometer (MODIS) measurements. J Geophys Res 108:4651. doi:101029/2003JD003372

    Article  Google Scholar 

  • Liu J, Liang H, Sun Z et al (2006) Variation of the Moderate Resolution Imaging Spectro-radiometer precipitable water vapor product using measurements from GPS on the Tibetan Plateau. J Geophys Res 111:D14103. doi:10.1029/2005JD007028

    Article  Google Scholar 

  • Lu N, Qin J, Yang K et al (2011) On the use of GPS measurements for Moderate Resolution Imaging Spectrometer precipitable water vapour evaluation over southern Tibet. J Geophys Res 116:D23117. doi:10.1029/2011JD016160

    Article  Google Scholar 

  • Macpherson S, Deblonde G, Aparicio J (2006) Assimilation of ground-based GPS observations in the Canadian regional analysis and forecast system. In: 10th symposium on Integrated Observing and Assimilation System for the Atmosphere, Ocean and Land Surface (IOAS-AOLS), American Meteorological Society

  • Mendes VB, Prates G, Santoa L et al (2000) An evaluation of the accuracy of models for the determination of the weighted mean temperature of the atmosphere. Proceedings of ION 2000, National Technical Meeting, Anaheim, CA, USA, 433–438

  • Musa TA, Amir S, Othman R et al (2011) GPS meteorology in a low-latitude region: remote sensing of atmospheric water vapor over the Malaysian Peninsula. J Atmos Sol Terr Phys 73(16):2410–2422. doi:10.1016/j.jastp.2011.08.014

    Article  Google Scholar 

  • Prasad AK, Singh RP (2009) Validation of MODIS Terra, AIRS, NCEP/DOE AMIP-II Reanalysis-2, and AERONET Sun photometer derived integrated precipitable water vapor using ground-based GPS receivers over India. J Geophys Res 114:D05107. doi:10.1029/2008JD011230

    Article  Google Scholar 

  • Prasad AK, Singh RP, Singh S et al (2007) GPS and satellite meteorology for understanding monsoon dynamics over the Indian subcontinent. Proceedings of Symposium HS 2004 at IUGG 2007, Perugia, July 2007. IAHS Publ 313:33–39

    Google Scholar 

  • Rocken C, Ware R, Van Hove T et al (1993) Sensing atmospheric water vapour with the Global Positioning System. Geophys Res Lett 20:2631–2634

    Article  Google Scholar 

  • Schueler T, Posfay A, Hein GW et al (2001) A Global Analysis of the Mean Atmospheric Temperature for GPS Water Vapor Estimation. C5: Atmospheric Effects, IONGPS2001-14th International Technical meeting of satellite Division of the Institute of Navigation, Salt Lake City, Utah. http://ifen1.bauv.unibw-muenchen.de/Forschung/TropAC/docs/ION2001.PDF

  • Solbrig P (2000) Untersuchungen uber die Nutzung numerischer Wettermodelle zur Wasserdampfbestimmung mit Hilfe des Global Positioning Systems, Diploma Thesis, Institute of Geodesy and Navigation, University FAF Munich, Germany

  • Spilker Jr. JJ (1980) GPS signal structure and performance characteristics. Global Positioning System, The US Ins. of Navigation, vol. 1, pp 29–54

  • Wang J, Zhang L, Dai A (2005) Global estimates of water-vapor weighted mean temperature of the atmosphere for GPS applications. J Geophys Res 110:D21101. doi:10.1029/2005JD006215

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Ministry of Earth science (MOES), India for the GPS data of Indian GPS networks. We are also thankful to the Director, G. B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal Almora for his motivating attitude and time to time help during the project. We would also like to acknowledge the support given by Dr. R.W. King, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology. We are also thankful to anonymous reviewers for input/comments which helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneh Joshi.

Additional information

Responsible editor: J. Fasullo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, S., Kumar, K., Pande, B. et al. GPS-derived precipitable water vapour and its comparison with MODIS data for Almora, Central Himalaya, India. Meteorol Atmos Phys 120, 177–187 (2013). https://doi.org/10.1007/s00703-013-0242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-013-0242-z

Keywords

Navigation