Skip to main content

Advertisement

Log in

Observed and simulated sea breeze characteristics over Rayong coastal area, Thailand

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This work presents the detailed characterization of sea breeze (SB) over the Rayong coastal area, one of the most rapidly developed and highly industrialized areas during the last decade in Thailand, using observation data analysis and fine-resolution (2 km) mesoscale meteorological modeling with incorporation of new land cover and satellite-derived vegetation fraction data sets. The key characteristics considered include frequency of SB occurrence, sea-breeze day (SBD) identification, degree of inland penetration, and boundary layer development. It was found that SBs occur frequently in the winter due mainly to relatively large land–sea temperature contrasts and minimally in the wet season. Monthly mean SB onset and cessation times are at around 12–15 local time (LT) and 18–21 LT, respectively, and its strength peaks during the early- to mid-afternoon. Monthly SB hodographs generally exhibit clockwise rotations, and SB inland penetration (at PCD-T tower) ranges widely with the monthly means of 25–55 km from the coast. Mesoscale MM5 modeling was performed on two selected SBDs (13 January and 16 March 2006), on which the SBs are under weak and onshore strong influences from background winds, respectively. Simulated near-surface winds and temperature were found to be in fair-to-acceptable agreement with the observations. The SB circulation along the Rayong coast is clearly defined with a return flow aloft and a front on 13 January, while it is enhanced by the onshore background winds on 16 March. Another SB along the Chonburi coast also develops separately, but their fronts merge into one in the mid-afternoon, resulting in large area coverage by the SB. Simulated planetary boundary layer height over the land area is significantly affected by a thermal internal boundary layer (TIBL) induced by an SB, which is found to be low near the coast and increases toward the front (up to 800–1,000 m along the Rayong coast).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbs DJ, Physick WL (1992) Sea breeze observations and modeling: a review. Aust Meteorol Mag 41:7–9

    Google Scholar 

  • Arritt RW (1992) Effects of the large-scale flow on characteristic features of the sea breeze. J Appl Meteor 32:116–125

    Article  Google Scholar 

  • Azorin-Molina C, Chen D (2008) A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theor Appl Climatol 96:249–260

    Article  Google Scholar 

  • Borne K, Chen D, Nunez M (1998) A method for finding sea-breeze days under stable synoptic conditions and its application to the Swedish west coast. Int J Climatol 18:901–914

    Article  Google Scholar 

  • Cai XM, Steyn DG (2000) Modelling study of sea breezes in a complex coastal environment. Atmos Environ 34:2873–2885

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land–surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Wea Rev 129:569–585

    Article  Google Scholar 

  • Chen XL, Feng YR, Li JN, Lin WS, Fan SJ, Wang AY, Fong SK, Lin H (2009) Numerical simulations on the effect of sea–land breezes on atmospheric haze over the Pearl River Delta region. Environ Model Assess 14:351–363

    Article  Google Scholar 

  • Crosman ET, Horel JD (2010) Sea and lake breezes: a review of numerical studies. Bound Layer Meteorol 137:1–29

    Article  Google Scholar 

  • Dandou A, Tombrou M, Soulakellis N (2009) The influence of the city of Athens on the evolution of the sea breeze front. Bound Layer Meteorol 131:35–51

    Article  Google Scholar 

  • Ding AJ, Wang T, Zhao M, Wang TJ, Li ZK (2004) Simulation of sea–land breezes and a discussion of their implications on the transport of air pollution during a multi-day ozone episode in the Pearl River Delta of China. Atmos Environ 38:6737–6750

    Article  Google Scholar 

  • European Commission, Joint Research Centre (EC-JRC) (2003) Global Land Cover 2000 database Website: http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php. Accessed: September 2009

  • Furberg M, Steyn DG, Baldi M (2002) The climatology of sea breezes on Sardinia. Int J Climatol 22:917–932

    Article  Google Scholar 

  • Gemmill, William, Bert Katz, Xu Li (2007) Daily real-time global sea surface temperature-high resolution analysis at NOAA/NCEP. NOAA/NWS/NCEP/MMAB Office Note Nr. 260. Website: http://polar.ncep.noaa.gov/sst. Accessed September 2008

  • Grell GA, Dudhia J, Stauffer DR (1994) A Description of the fifth generation Penn State/NCAR mesoscale model (MM5). Technical Note, NCAR, Boulder, Colorado, US

  • Gutman G, Ignatov A (1997) Satellite derived green vegetation fraction for the use in numerical weather prediction models. Adv Space Res 19:477–480

    Article  Google Scholar 

  • Hadi TW, Horinouchi T, Tsuda T, Hashiguchi H, Fukao S (2002) Sea-breeze circulation over Jakarta, Indonesia: a climatology based on boundary layer radar observations. Mon Wea Rev 130:2153–2166

    Article  Google Scholar 

  • Haurwitz B (1947) Comments on the sea-breeze circulation. J Meteorol 4:1–8

    Article  Google Scholar 

  • Helmis CG, Papadopoulos KH, Kalogiros JA, Soilemes AT, Asimakopoulos DN (1995) Influence of background flow on evolution of Saronic Gulf sea breeze. Atmos Environ 29:3689–3701

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain ETA coordinate model: further development of the convection, viscous sublayer and turbulent closure schemes. Mon Wea Rev 122:927–945

    Article  Google Scholar 

  • Joseph B, Bhatt BC, Koh TY, Chen S (2008) Sea breeze simulation over the Malay Peninsula in an intermonsoon period. J Geophys Res 113:d20122. doi:10.1029/2008jd010319

    Article  Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteor 43:170–181

    Article  Google Scholar 

  • Kusuda M, Alpert P (1983) Anti-clockwise rotation of the wind hodograph. Part I: theoretical study. J Atmos Sci 40:487–499

    Article  Google Scholar 

  • LDD (2007) Land use and land cover data of Thailand for the years 2006–2007. CD-ROM Product, Ministry of Agriculture and Cooperatives, Thailand

  • Lin WS, Wang AY, Wu CS, Fong SK, Ku CM (2001) A case modeling of sea–land breeze in Macao and its neighborhood. Adv Atmos Sci 18:1231–1240

    Article  Google Scholar 

  • Lu X, Chow KC, Yao T, Lau AKH, Fung JCH (2009) Effects of urbanization on the land sea breeze circulation over the Pearl River Delta region in winter. Int J Climatol 30:1089–1104

    Google Scholar 

  • Manomaiphiboon K, Prabamroong A, Chanaprasert W, Rajpreeja N, Phan TT (2010) Dual database system of wind resource for Thailand. Final Report of Project “Wind Resource Assessment Using Advanced Atmospheric Modeling and GIS Analysis”, Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi (in Thai, with English Abstract). Website: http://complabbkt.jgsee.kmutt.ac.th/wind_proj Accessed: August 2010

  • Miao JF, Kroon LJM, Vilà-Guerau de Arellano J, Holtslag AAM (2003) Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorol Atmos Phys 84:157–170

    Article  Google Scholar 

  • Miao JF, Chen D, Borne K (2007) Evaluation and comparison of Noah and Pleim-Xiu land surface models in MM5 using GÖTE2001 data: spatial and temporal variations in near-surface air temperature. J Appl Meteor Climatol 46:1587–1605

    Article  Google Scholar 

  • Miao JF, Chen D, Wyser K, Borne K, Lindgren J, Strandevall MKS, Thorsson S, Achberger C, Almkvist E (2008) Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: influence of PBL and LSM parameterizations. Meteorol Atmos Phys 99:77–103

    Article  Google Scholar 

  • Miao JF, Wyser K, Chen D, Ritchie H (2009) Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics. Ann Geophys 27:2303–2320

    Article  Google Scholar 

  • Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys 41:1–31

    Article  Google Scholar 

  • NASA Landsat Program (2010) Landsat scenes from epoch 2005 collection. Website: http://landsat.usgs.gov. Accessed August 2010

  • National Centers for Environmental Prediction (NCEP) (2010) FNL operational model global tropospheric analyses. Website: http://dss.ucar.edu/datasets/ds083.2. Accessed September 2008

  • Papanastasiou DK, Melas D (2009) Climatology and impact on air quality of sea breeze in an urban coastal environment. Int J Climatol 29:305–315

    Article  Google Scholar 

  • Papanastasiou DK, Melas D, Lissaridis I (2010) Study of wind field under sea breeze conditions; an application of WRF model. Atmos Res 98:102–117

    Article  Google Scholar 

  • Pham TBT, Manomaiphiboon K, Vongmahadlek C (2008) Development of an inventory and temporal allocation profiles of emissions from power plants and industrial facilities in Thailand. Sci Total Environ 397:103–118

    Article  Google Scholar 

  • Pielke RA, Cotton WR, Walko RL, Tremback CJ, Lyons WA, Grasso LD, Nicholls ME, Moran MD, Wesley DA, Lee TJ, Copeland JH (1992) A comprehensive meteorological modeling system—RAMS. Meteorol Atmos Phy 49:69–91

    Article  Google Scholar 

  • Pollution Control Department (PCD) (2007) Thailand state of pollution in 2006. Ministry of Natural Resources and Environment. Website: http://www.pcd.go.th/count/mgtdl.cfm?FileName=Report_Eng2549.pdf. Accessed: September 2009

  • Pushpadas D, Vethamony P, Sudheesh K, George S, Babu MT, Nair TMB (2010) Simulation of coastal winds along the central west coast of India using the MM5 mesoscale model. Meteorol Atmos Phys 109:91–106

    Article  Google Scholar 

  • Simpson JE (1994) Sea breeze and local winds. Cambridge University Press, New York

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF Version 2. Technical Note 468 + STR, NCAR, Boulder, Colorado, US

  • Srinivas CV, Venkatesan R, Somayaji KM, Singh AB (2006) A numerical study of sea breeze circulation observed at a tropical site Kalpakkam on the east coast of India, under different synoptic flow situations. J Earth Syst Sci 115:557–574

    Article  Google Scholar 

  • Thai Meteorological Department (TMD) (2010) Climate of Thailand. Ministry of Information and Communication Technology. Website: http://www.tmd.go.th/en/archive/surfacewind.php. Accessed: September 2009

  • Thepanondh S, Varoonphan J, Sarutichart P, Makkasap T (2010) Airborne volatile organic compounds and their potential health impact on the vicinity of petrochemical industrial complex. Water Air Soil Pollut. doi:10.1007/s11270-010-0406-0

    Google Scholar 

  • van Ulden AP, Holtslag AAM (1985) Estimation of atmospheric boundary layer parameters for diffusion applications. J. Clim Appl Meteorol 24:1196–1207

    Article  Google Scholar 

  • VITO (2010) Free vegetation products. Flemish Institute for Technological Research, Belgium. Website: http://free.vgt.vito.be. Accessed September 2009

Download references

Acknowledgments

The authors sincerely thank the Pollution Control Department, the Department of Energy Development and Efficiency, the Land Development Department, and the Thai Meteorological Department for providing local data, the National Center for Atmospheric Research (US) for the availability of the MM5 model, and the National Centers for Environmental Protection (US) for the FNL Reanalysis and RTG SST data. The authors also thank Dr. Robert H. B. Exell and Dr. Chumnong Sorapipatana (JGSEE), Dr. Dusadee Sukawat (KMUTT), Mr. Nawarat Mitjit (PCD), and the two anonymous reviewers for their useful comments and suggestions. Assistance by members at the JGSEE computational laboratory is acknowledged. This study was financially supported mainly by the JGSEE and the Thailand Research Fund (under Grant No. RDG5050016) and partially by the Postgraduate Education and Research Development Office (under Grant No. JGSEE/PROJECT/002-2011) and the National Research Council of Thailand (under Grant No. POR KOR 2550-46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasemsan Manomaiphiboon.

Additional information

Responsible editor: J.-F. Miao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, T.T., Manomaiphiboon, K. Observed and simulated sea breeze characteristics over Rayong coastal area, Thailand. Meteorol Atmos Phys 116, 95–111 (2012). https://doi.org/10.1007/s00703-012-0185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-012-0185-9

Keywords

Navigation