Skip to main content

Advertisement

Log in

Direct inhibition of retinoic acid catabolism by fluoxetine

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Recent evidence from animal and human studies suggests neuroprotective effects of the SSRI fluoxetine, e.g., in the aftermath of stroke. The underlying molecular mechanisms remain to be fully defined. Because of its effects on the cytochrome P450 system (CYP450), we hypothesized that neuroprotection by fluoxetine is related to altered metabolism of retinoic acid (RA), whose CYP450-mediated degradation in brain tissue constitutes an important step in the regulation of its site-specific auto- and paracrine actions. Using traditional pharmacological in vitro assays, the effects of fluoxetine on RA degradation were probed in crude synaptosomes from rat brain and human-derived SH-SY5Y cells, and in cultures of neuron-like SH-SY5Y cells. Furthermore, retinoid-dependent effects of fluoxetine on neuronal survival following glutamate exposure were investigated in rat primary neurons cells using specific retinoid receptor antagonists. Experiments revealed dose-dependent inhibition of synaptosomal RA degradation by fluoxetine along with dose-dependent increases in RA levels in cell cultures. Furthermore, fluoxetine’s neuroprotective effects against glutamate excitotoxicity in rat primary neurons were demonstrated to partially depend on RA signaling. Taken together, these findings demonstrate for the first time that the potent, pleiotropic antidepressant fluoxetine directly interacts with RA homeostasis in brain tissue, thereby exerting its neuroprotective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aoto J, Nam CI, Poon MM, Ting P, Chen L (2008) Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60(2):308–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bedrosian TA, Nelson RJ (2013) Influence of the modern light environment on mood. Mol Psychiatry 18(7):751–757

    Article  CAS  PubMed  Google Scholar 

  • Bosel J, Gandor F, Harms C, Synowitz M, Harms U, Djoufack PC, Megow D, Dirnagl U, Hortnagl H, Fink KB, Endres M (2005) Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J Neurochem 92(6):1386–1398

    Article  PubMed  Google Scholar 

  • Bremner JD, Shearer KD, McCaffery PJ (2012) Retinoic acid and affective disorders: the evidence for an association. J Clin Psychiatry 73(1):37–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, Bejot Y, Deltour S, Jaillard A, Niclot P, Guillon B, Moulin T, Marque P, Pariente J, Arnaud C, Loubinoux I (2011) Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 10(2):123–130

    Article  CAS  PubMed  Google Scholar 

  • Corcoran JP, So PL, Maden M (2004) Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur J Neurosci 20(4):896–902

    Article  PubMed  Google Scholar 

  • Dheen ST, Jun Y, Yan Z, Tay SS, Ling EA (2005) Retinoic acid inhibits expression of TNF-alpha and iNOS in activated rat microglia. Glia 50(1):21–31

    Article  PubMed  Google Scholar 

  • Dziedzicka-Wasylewska M, Willner P, Papp M (1997) Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment. Behav Pharmacol 8(6–7):607–618

    Article  CAS  PubMed  Google Scholar 

  • Ghosh C, Marchi N, Desai NK, Puvenna V, Hossain M, Gonzalez-Martinez J, Alexopoulos AV, Janigro D (2011) Cellular localization and functional significance of CYP3A4 in the human epileptic brain. Epilepsia 52(3):562–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilbert EA, Edwards RJ, Boobis AR, Rose S, Jenner P (2003) Differential expression of cytochrome P450 enzymes in cultured and intact foetal rat ventral mesencephalon. J Neural Transm 110(10):1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Grunblatt E, Riederer P (2014) Aldehyde dehydrogenase (ALDH) in Alzheimer’s and Parkinson’s disease. J Neural Transm. doi:10.1007/s00702-014-1320-1

  • Gulbins E, Palmada M, Reichel M, Luth A, Bohmer C, Amato D, Muller CP, Tischbirek CH, Groemer TW, Tabatabai G, Becker KA, Tripal P, Staedtler S, Ackermann TF, van Brederode J, Alzheimer C, Weller M, Lang UE, Kleuser B, Grassme H, Kornhuber J (2013) Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat Med 19(7):934–938

    Article  CAS  PubMed  Google Scholar 

  • Gylys KH, Fein JA, Cole GM (2000) Quantitative characterization of crude synaptosomal fraction (P-2) components by flow cytometry. J Neurosci Res 61(2):186–192

    Article  CAS  PubMed  Google Scholar 

  • Hellmann J, Rommelspacher H, Muhlbauer E, Wernicke C (2010) Raf kinase inhibitor protein enhances neuronal differentiation in human SH-SY5Y cells. Dev Neurosci 32(1):33–46

    Article  CAS  PubMed  Google Scholar 

  • Hellmann J, Juttner R, Roth C, Bajbouj M, Kirste I, Heuser I, Gertz K, Endres M, Kronenberg G (2011) Repetitive magnetic stimulation of human-derived neuron-like cells activates cAMP-CREB pathway. Eur Arch Psychiatry Clin Neurosci 262(1):87–91

    Article  PubMed  Google Scholar 

  • Hellmann-Regen J, Gertz K, Uhlemann R, Colla M, Endres M, Kronenberg G (2012) Retinoic acid as target for local pharmacokinetic interaction with modafinil in neural cells. Eur Arch Psychiatry Clin Neurosci 262(8):697–704

    Article  PubMed  Google Scholar 

  • Hellmann-Regen J, Heuser I, Regen F (2013a) UV-A emission from fluorescent energy-saving light bulbs alters local retinoic acid homeostasis. Photochem Photobiol Sci 12(12):2177–2185

    Article  CAS  PubMed  Google Scholar 

  • Hellmann-Regen J, Kronenberg G, Uhlemann R, Freyer D, Endres M, Gertz K (2013b) Accelerated degradation of retinoic acid by activated microglia. J Neuroimmunol 256(1–2):1–6

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Liu J, Zhao J, Qi XR, Qi CC, Lucassen PJ, Zhou JN (2013) All-trans retinoic acid-induced hypothalamus–pituitary–adrenal hyperactivity involves glucocorticoid receptor dysregulation. Transl Psychiatry 3:e336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brosen K (1996) Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 51(1):73–78

    Article  CAS  PubMed  Google Scholar 

  • Karson CN, Newton JE, Livingston R, Jolly JB, Cooper TB, Sprigg J, Komoroski RA (1993) Human brain fluoxetine concentrations. J Neuropsychiatry Clin Neurosci 5(3):322–329

    Article  CAS  PubMed  Google Scholar 

  • Katsuki H, Kurimoto E, Takemori S, Kurauchi Y, Hisatsune A, Isohama Y, Izumi Y, Kume T, Shudo K, Akaike A (2009) Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J Neurochem 110(2):707–718

    Article  CAS  PubMed  Google Scholar 

  • Komoroski RA, Newton JE, Cardwell D, Sprigg J, Pearce J, Karson CN (1994) In vivo 19F spin relaxation and localized spectroscopy of fluoxetine in human brain. Magn Reson Med 31(2):204–211

    Article  CAS  PubMed  Google Scholar 

  • Kornhuber J, Tripal P, Reichel M, Muhle C, Rhein C, Muehlbacher M, Groemer TW, Gulbins E (2010) Functional inhibitors of acid sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem 26(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Krzyzosiak A, Szyszka-Niagolov M, Wietrzych M, Gobaille S, Muramatsu S, Krezel W (2010) Retinoid x receptor gamma control of affective behaviors involves dopaminergic signaling in mice. Neuron 66(6):908–920

    Article  CAS  PubMed  Google Scholar 

  • Lautenschlager M, Holtje M, von Jagow B, Veh RW, Harms C, Bergk A, Dirnagl U, Ahnert-Hilger G, Hortnagl H (2000) Serotonin uptake and release mechanisms in developing cultures of rat embryonic raphe neurons: age- and region-specific differences. Neuroscience 99(3):519–527

    Article  CAS  PubMed  Google Scholar 

  • Lim CM, Kim SW, Park JY, Kim C, Yoon SH, Lee JK (2009) Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J Neurosci Res 87(4):1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8(10):755–765

    Article  CAS  PubMed  Google Scholar 

  • Maghsoodi B, Poon MM, Nam CI, Aoto J, Ting P, Chen L (2008) Retinoic acid regulates RARalpha-mediated control of translation in dendritic RNA granules during homeostatic synaptic plasticity. Proc Natl Acad Sci USA 105(41):16015–16020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marill J, Cresteil T, Lanotte M, Chabot GG (2000) Identification of human cytochrome P450 s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol 58(6):1341–1348

    CAS  PubMed  Google Scholar 

  • McCaffery PJ, Adams J, Maden M, Rosa-Molinar E (2003) Too much of a good thing: retinoic acid as an endogenous regulator of neural differentiation and exogenous teratogen. Eur J Neurosci 18(3):457–472

    Article  CAS  PubMed  Google Scholar 

  • McCaffery P, Zhang J, Crandall JE (2006) Retinoic acid signaling and function in the adult hippocampus. J Neurobiol 66(7):780–791

    Article  CAS  PubMed  Google Scholar 

  • McSorley LC, Daly AK (2000) Identification of human cytochrome P450 isoforms that contribute to all-trans-retinoic acid 4-hydroxylation. Biochem Pharmacol 60(4):517–526

    Article  CAS  PubMed  Google Scholar 

  • Murate T, Suzuki M, Hattori M, Takagi A, Kojima T, Tanizawa T, Asano H, Hotta T, Saito H, Yoshida S, Tamiya-Koizumi K (2002) Up-regulation of acid sphingomyelinase during retinoic acid-induced myeloid differentiation of NB4, a human acute promyelocytic leukemia cell line. J Biol Chem 277(12):9936–9943

    Article  CAS  PubMed  Google Scholar 

  • Napoli JL (1999) Retinoic acid: its biosynthesis and metabolism. Prog Nucleic Acid Res Mol Biol 63:139–188

    Article  CAS  PubMed  Google Scholar 

  • Navigatore-Fonzo LS, Golini RL, Ponce IT, Delgado SM, Plateo-Pignatari MG, Gimenez MS, Anzulovich AC (2013) Retinoic acid receptors move in time with the clock in the hippocampus. Effect of a vitamin-A-deficient diet. J Nutr Biochem 24(5):859–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niwa T, Murayama N, Yamazaki H (2009) Oxidation of endobiotics mediated by xenobiotic-metabolizing forms of human cytochrome. Curr Drug Metab 10(7):700–712

    Article  CAS  PubMed  Google Scholar 

  • Partonen T (2012) Clock gene variants in mood and anxiety disorders. J Neural Transm 119(10):1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Persson A, Sim SC, Virding S, Onishchenko N, Schulte G, Ingelman-Sundberg M (2014) Decreased hippocampal volume and increased anxiety in a transgenic mouse model expressing the human CYP2C19 gene. Mol Psychiatry 19(6):733–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruano G, Villagra D, Szarek B, Windemuth A, Kocherla M, Gorowski K, Berrezueta C, Schwartz HI, Goethe J (2011) Physiogenomic analysis of CYP450 drug metabolism correlates dyslipidemia with pharmacogenetic functional status in psychiatric patients. Biomark Med 5(4):439–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schrader M, Bendik I, Becker-Andre M, Carlberg C (1993) Interaction between retinoic acid and vitamin D signaling pathways. J Biol Chem 268(24):17830–17836

    CAS  PubMed  Google Scholar 

  • Shearer KD, Stooney PN, Nanescu SE, Helfer G, Barrett P, Ross AW, Morgan PJ, McCaffery P (2012) Photoperiodic expression of two RALDH enzymes and the regulation of cell proliferation by retinoic acid in the rat hypothalamus. J Neurochem 122(4):789–799

    Article  CAS  PubMed  Google Scholar 

  • Sherman H, Gutman R, Chapnik N, Meylan J, le Coutre J, Froy O (2012) All-trans retinoic acid modifies the expression of clock and disease marker genes. J Nutr Biochem 23(3):209–217

    Article  CAS  PubMed  Google Scholar 

  • Shimozono S, Iimura T, Kitaguchi T, Higashijima S, Miyawaki A (2013) Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496(7445):363–366

    Article  CAS  PubMed  Google Scholar 

  • Sim SC, Nordin L, Andersson TM, Virding S, Olsson M, Pedersen NL, Ingelman-Sundberg M (2010) Association between CYP2C19 polymorphism and depressive symptoms. Am J Med Genet B Neuropsychiatr Genet 153B(6):1160–1166

    CAS  PubMed  Google Scholar 

  • Sprouse J, Braselton J, Reynolds L (2006) Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol Psychiatry 60(8):896–899

    Article  CAS  PubMed  Google Scholar 

  • Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Bjorling L, Ponten F (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28(12):1248–1250

    Article  CAS  PubMed  Google Scholar 

  • Uz T, Ahmed R, Akhisaroglu M, Kurtuncu M, Imbesi M, Dirim Arslan A, Manev H (2005) Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience 134(4):1309–1316

    Article  CAS  PubMed  Google Scholar 

  • van Neerven S, Nemes A, Imholz P, Regen T, Denecke B, Johann S, Beyer C, Hanisch UK, Mey J (2010) Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J Neuroimmunol 229(1–2):169–179

    Article  PubMed  Google Scholar 

  • Voirol P, Jonzier-Perey M, Porchet F, Reymond MJ, Janzer RC, Bouras C, Strobel HW, Kosel M, Eap CB, Baumann P (2000) Cytochrome P-450 activities in human and rat brain microsomes. Brain Res 855(2):235–243

    Article  CAS  PubMed  Google Scholar 

  • Wietrzych-Schindler M, Szyszka-Niagolov M, Ohta K, Endo Y, Perez E, de Lera AR, Chambon P, Krezel W (2011) Retinoid x receptor gamma is implicated in docosahexaenoic acid modulation of despair behaviors and working memory in mice. Biol Psychiatry 69(8):788–794

    Article  CAS  PubMed  Google Scholar 

  • Willner P, Hale AS, Argyropoulos S (2005) Dopaminergic mechanism of antidepressant action in depressed patients. J Affect Disord 86(1):37–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JHR is participant in the Charité Clinical Scientist Program funded by the Charité Universitätsmedizin Berlin and the Berlin Institute of Health. This work was further supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich TRR 43 and Cluster of Excellence 257 NeuroCure), the Bundesministerium für Bildung und Forschung (Center for Stroke Research Berlin) and the DZHK (German Center for Cardiovascular Research), Berlin partner site.

Conflict of interest

CO has received honoraria fees for lectures from Lundbeck and Servier and has received compensation as a member of the scientific advisory board of Lundbeck. ME received grant support from AstraZeneca, Sanofi and Roche; participated in advisory board meetings of Bayer, Boehringer-Ingelheim, Bristol-Myers Squibb, MSD, Pfizer, Sanofi; and received honoraria from Astra Zeneca, Bayer, Boston Scientific, Berlin Chemie, Bristol-Myers Squibb, Boehringer-Ingelheim, Desitin, Ever, Glaxo Smith Kline, MSD, Novartis, Pfizer, Sanofi, Servier and Takeda. G.K. received honoraria from Eli Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Hellmann-Regen.

Additional information

K. Gertz and G. Kronenberg contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellmann-Regen, J., Uhlemann, R., Regen, F. et al. Direct inhibition of retinoic acid catabolism by fluoxetine. J Neural Transm 122, 1329–1338 (2015). https://doi.org/10.1007/s00702-015-1407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1407-3

Keywords

Navigation