Skip to main content

Advertisement

Log in

Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Monoamine oxidase types A and B (MAO-A, MAO-B) regulate the levels of monoamine neurotransmitters in the brain, and their dysfunction may be involved in the pathogenesis and influence the clinical phenotypes of neuropsychiatric disorders. Reversible MAO-A inhibitors, such as moclobemide and befloxatone, are currently employed in the treatment of emotional disorders by inhibiting the enzymatic degradation of dopamine, serotonin and norepinephrine in the central nervous system (CNS). It has been suggested that the irreversible MAO-B inhibitors selegiline and rasagiline exert a neuroprotective effect in Parkinson’s and Alzheimer’s diseases. This effect, however, is not related to their inhibition of MAO activity; in animal and cellular models, selegiline and rasagiline protect neuronal cells through their anti-apoptotic activity and induction of pro-survival genes. There is increasing evidence that MAO-A activity, but not that of MAO-B, is implicated in the pathophysiology of neurodegenerative disorders, but also in gene induction by MAO-B inhibitors; on the other hand, selegiline and rasagiline increase MAO-A mRNA, protein, and enzyme activity levels. Taken together, these results suggest that each MAO subtype exerts effects that modulate the expression and activity of the other isoenzyme. The roles of MAO-A and -B in the CNS should therefore be re-evaluated with respect to the “type-specificity” of their inhibitors, which may not be unconditional during chronic treatment. Mao-a expression, in particular, may be implicated in pathogenesis and phenotypes in neuropsychiatric disorders. MAO-A expression is modified by mao polymorphisms affecting its transcriptional efficiency, as well as by mutations and polymorphism of parkin, Sirt1, FOXO, microRNA, presenilin-1, and other regulatory proteins. In addition, childhood maltreatment has been shown to have an impact upon adolescent social behavior in children with mao-a polymorphisms of low transcriptional activity. Low MAO-A activity may increase the levels of serotonin and norepinephrine, resulting in disturbed neurotransmitter system development and behavior. This review discusses genetic and environmental factors involved in the regulation of MAO-A expression, in the contexts of neuropsychiatric function and of the regulation of neuronal survival and death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

DA:

Dopamine

DISC1:

Disrupted-in-schizophrenia 1

DSP-4:

N-(2-Chloroethyl)-N-ethyl-2-bromo-benzylamine

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GDNF:

Glial cell line-derived neurotrophic factor

5-HT:

5-Hydroxytryptamine (serotonin)

KLF11:

Krüppel-like factor

LRRK-2:

Leucine repeat-rich kinase 2

MAO-A and MAO-B:

Type A and B monoamine oxidase

MAPK:

Mitogen-activated protein kinase

MDMA:

3,4-Methylenedioxymethamphetamine

NE:

Norepinephrine

NGF:

Nerve growth factor

NHLH2:

Nescient helix loop helix transcription factor 2

NMDA:

N-Methyl-d-aspartate

NT-3:

Neurotrophic factor-3

PD:

Parkinson’s disease

PEA:

Phenylethylamine

ROS:

Reactive oxygen species

SNP:

Single-nucleotide polymorphisms

UPS:

Ubiquitin−proteasome system

VPA:

Valproic acid (2-propylpentanoic acid)

References

  • Ahlskog JE, Uitti RJ (2010) Rasagiline, Parkinson neuroprotection, and delayed-start trial. Still no satisfaction? Neurology 74(14):1143–1148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Akao Y, Maruyama W, Shimizu S, Yi H, Shamoto-Nagai M et al (2002) Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and its inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem 82(4):913–923

    Article  CAS  PubMed  Google Scholar 

  • Alia-Klein N, Goldstein RZ, Kriplani A, Logan J, Tomasi D et al (2008) Brain monoamine oxidase A activity predicts trait aggression. J Neurosci 28(19):5099–5104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alves E, Summavielle T, Alves CJ, Gomes-da-Silva J, Barata JC et al (2007) Monoamine oxidase-B mediates ecstasy-induced neurotoxic effects to adolescence rat brain mitochondria. J Neurosci 27(38):10203–10210

    Article  CAS  PubMed  Google Scholar 

  • Barac YD, Bar-Am O, Liani E, Amit T, Frolov L et al (2012) I1 imidazoline receptor: novel potential cytoprotective target of TV1022, the S-enantiomer of rasagiline. PLoS ONE 7(11):e47980

    Article  CAS  Google Scholar 

  • Bartl J, Müller T, Grünblatt E, Gerlach M, Riederer P (2014) Chronic monoamine oxidase-B inhibitor treatment blocks monoamine oxidase-A enzyme activity. J Neural Transm 121(4):379–383

    Article  CAS  PubMed  Google Scholar 

  • Binda C, Hubalek F, Li M, Herzig Y, Sterling J et al (2005) Binding of rasagiline-related inhibitors to human monoamine oxidases; a kinetic and crystallographic analysis. J Med Chem 48(26):8148–8154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton J (1985) Increased life expectancy resulting from addition of l-deprenyl to Madopar treatment in Parkinson’s disease; a long-term study. J Neural Transm 64(2):113–127

    Article  CAS  PubMed  Google Scholar 

  • Black GC, Chen ZY, Craig JW, Powell JF (1991) Dinucleotide repeat polymorphism at the MAOA locus. Nucleic Acids Res 19(3):689

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bortolato M, Shih JC (2011) Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence. Int Rev Neurobiol 100:13–42

    Article  PubMed Central  PubMed  Google Scholar 

  • Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60(13–14):1527–1533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brandon NJ, Miller JK, Korth C, Sive H, Singh KK, Sawa A (2009) Understanding the role of DISC1 in psychiatric disease and during normal development. J Neurosci 29(4):12768–12775

    Article  CAS  PubMed  Google Scholar 

  • Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993a) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262(5133):578–580

    Article  CAS  PubMed  Google Scholar 

  • Brunner HG, Nelen MR, van Zandvoort P, Abeling NG, van Gennip AH et al (1993b) X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet 52(6):1032–1039

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buneeva OA, Medvedeva MV, Medvedev AE (1999) Incorporation of ubiquitin into rat brain mitochondria is accompanied by increased proteolytic digestibility of MAO. Neurobiology (Bp) 7(3):257–261

    CAS  Google Scholar 

  • Cao X, Wei Z, Gabriel GG, Li X, Mousseau DD (2007) Calcium-sensitive regulation of monoamine oxidase-A contributes to the production of peroxyradicals in hippocampal culture: implications for Alzheimer disease-related pathology. BMC Neurosci 8:73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cao X, Li X-M, Mousseau DD (2009a) Calcium alters monoamine oxidase-A parameters in human cerebellar and rat glial C6 cell extracts: possible influence by distinct signal pathways. Life Sci 85(5–6):262–268

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Rui L, Pennington PR, Chlan-Fourney J, Jiang Z et al (2009b) Serine 209 resides with a putative p38(MAPK) consensus motif and regulates monoamine-oxidase-A activity. J Neurochem 111(1):101–110

    Article  CAS  PubMed  Google Scholar 

  • Casarejos MJ, Solano RM, Menendez J, Rodriguez-Navarro JA, Correa C et al (2005) Differential effects of l-DOPA on monoamine metabolism, cell survival and glutathione production in midbrain neuronal-enriched cultures from parkin knockout and wild-type mice. J Neurochem 94(4):1005–1014

    Article  CAS  PubMed  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854

    Article  CAS  PubMed  Google Scholar 

  • Chaitidis P, Billett E, Kuban RJ, Ungethuem U, Kuhn H (2005) Expression regulation of MAO isoforms in monocytic cells in response to TH2 cytokines. Med Sci Monit 11(8):BR259–BR265

    CAS  PubMed  Google Scholar 

  • Chaudhuri AD, Yelamanchili AV, Fox HS (2013) MicroRNA-142 reduces monoamine oxidase A expression and activity in neuronal cells by downregulating SIRT1. PLoS ONE 8(11):e79579

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Ou XM, Chen G, Choi SH, Shih JC (2005) R1, a novel repressor of the human monoamine oxidase A. J Biol Chem 280(12):11552–11559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen K, Ou X-M, Wu JB, Shih JC (2011) Transcription factor E2F-associated phosphoprotein (EAPP), RAM2/CDCA7L/JPO2 (R1), and simian virus 40 promoter factor 1 (Sp1) cooperatively regulate glucocorticoid activation of monoamine oxidase B. Mol Pharmacol 79(2):308–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke A, Brewer F, Johnson ES, Mallard N, Hartig F et al (2003) A new formation of selegiline: improved bioavailability and selectivity for MAO-B inhibition. J Neural Transm 110(11):1241–1255

    Article  CAS  PubMed  Google Scholar 

  • Cohen IL, Liu X, Lewis ME, Chudley A, Forster-Gibson C et al (2011) Autism severity is associated with child and maternal MAOA genotypes. Clin Genet 79(4):355–362

    Article  CAS  PubMed  Google Scholar 

  • Collins GG, Sandler M, Williams ED, Youdim MB (1970a) Multiple forms of human brain mitochondrial monoamine oxidase. Nature 225(5235):817–820

    Article  CAS  PubMed  Google Scholar 

  • Collins GG, Pryse-Davies J, Sandler M, Southgate J (1970b) Effects of pretreatment with oestradiol, progesterone and DOPA on monoamine oxidase activity in rat. Nature 226(5246):642–643

    Article  CAS  PubMed  Google Scholar 

  • Cookson MR, Bandmann O (2010) Parkinson’s disease: insights from pathways. Human Mol Genetics 19(Review 1):R21–R27

    Article  CAS  Google Scholar 

  • Damier P, Kastner A, Agid Y, Hirsch EC (1996) Does monoamine oxidase B play a role in dopaminergic nerve cell death in Parkinson’s disease? Neurology 46(5):1262–1269

    Article  CAS  PubMed  Google Scholar 

  • De Zutter GS, Davis RJ (2001) Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc Natl Acad Sci USA 98(11):6168–6173

    Article  PubMed Central  PubMed  Google Scholar 

  • Deckert J, Catalano M, Syagailo VY, Bosi M, Okladnova O et al (1999) Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorders. Human Mol Genet 8(4):621–624

    Article  CAS  Google Scholar 

  • Donmez G, Outeiro TF (2013) Sirt1 and Sirt2: emerging targets in neurodegeneration. EMBO Mol Med 5(3):344–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ducci F, Enoch A-A, Hodgkinson C, Xu K, Caterna M et al (2008) Interaction between a functional MAOA locus and childhood sexual abuse predicts alcoholism and antisocial personality disorder in adult women. Mol Psychiatry 13(3):334–347

    Article  CAS  PubMed  Google Scholar 

  • Ebadi M, Brown-Borg H, Ren J, Sharma S, Shavali S et al (2006) Therapeutic efficacy of selegiline in neurodegenerative disorders and neurological diseases. Curr Drug Targets 7(11):1513–1529

    Article  CAS  PubMed  Google Scholar 

  • Edmondson DE, Binda C, Mattevi A (2007) Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B. Arch Biochem Biophys 464(2):269–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards AC, Dodge KA, Laterndresse SJ, Landsford JE, Bates JE et al (2010) MAOA uVNTR and early physical discipline interact to influence delinquent behavior. J Child Psychol Psychiatry 51(6):679–687

    Article  PubMed Central  PubMed  Google Scholar 

  • Egashira T, Sakai K, Sakurai M, Takayama F (2003) Calcium disodium edetate enhances type A monoamine oxidase activity in monkey brain. Biol Trace Elem Res 94(3):203–211

    Article  CAS  PubMed  Google Scholar 

  • Ekblom J, Oreland L, Chen K, Shih JC (1998) Is there a “non-MAO” macromolecular target for L-deprenyl?: studies on MAOB mutant mice. Life Sci 63(12):181–186

    Article  Google Scholar 

  • Falk EM, Cook VJ, Nichols DE, Sprague JE (2002) An antisense oligonucleotide targeted at MAO-B attenuates rat striatal serotonergic neurotoxicity induced by MDMA. Pharmacol Biochem Behav 72(3):617–622

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Yu PH (1994) Effect of l-deprenyl, its structural analogues and some monoamine oxidase inhibitors on dopamine uptake. Neuropharmacology 33(6):763–768

    Article  CAS  PubMed  Google Scholar 

  • Felner AE, Waldmeier PC (1979) Cumulative effects of irreversible MAO inhibitors in vivo. Biochem Pharmacol 28(7):995–1002

    Article  CAS  PubMed  Google Scholar 

  • Fergusson DM, Boden JM, Horwood LJ, Miller AL, Kennedy MA (2011) MAOA abuse exposure and antisocial behavior: 30-year longitudinal study. Brit J Psych 198(6):457–463

    Article  Google Scholar 

  • Finberg JP (2010) Pharmacology of rasagiline, a new MAO-B inhibitor drug for the treatment of Parkinson’s disease with neuroprotective potential. Rambam Maimonides Med J 1(1):e0003

    Article  PubMed Central  PubMed  Google Scholar 

  • Fitzgerald JC, Ufer C, De Girolamo LA, Kuhn H, Billet EE (2007) Monoamine oxidase-A modulates apoptotic cell death induced by staurosporine in human neuroblastoma cells. J Neurochem 103(6):2189–2199

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald JC, Ugun-Klusek A, Allen G, De Girolamo LA, Hargreaves I et al (2014) Monoamine oxidase-A knockdown in human neuroblastoma cells reveals protection against mitochondrial toxins. FASEB J 28(1):218–229

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Chen K, Giorgi FS, Gesi M, Alessandri MG, Shih JC (1999) Striatal dopamine metabolism in monoamine oxidase B-deficient mice: a brain dialysis study. J Neurochem 73(6):2434–2440

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Glorgi FS, Gesi M, Chen K, Alessri MG, Shih JC (2001) Biochemical effects of the monoamine neurotoxin DSP-4 and MDMA in specific brain regions of MAO-B deficient mice. Synapse 39(3):213–221

    Article  CAS  PubMed  Google Scholar 

  • Fowler JS, Logan J, Ding YS, Franceschi D, Wang GJ et al (2001) Non-MAO A binding of clorgyline in white matter in human brain. J Neurochem 79(5):1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Mucke L (2008) Paths of convergence: sirtuins in aging and neurodegeneration. Neuron 58(11):1–14

    Google Scholar 

  • Gerlach M, Maetzler W, Broich K, Hampel H, Rems L et al (2012) Biomarker candidates of neurodegeneration in Parkinson’s disease for the evaluation of disease-modifying therapeutics. J Neural Transm 119(1):39–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glover V, Sandler M, Owen F, Riley GJ (1977) Dopamine is a monoamine oxidase B substrate in man. Nature 265(5589):80–81

    Article  CAS  PubMed  Google Scholar 

  • Götz ME, Breithaupt W, Sautter J, Kupsch A, Schwarz J et al (1997) Chronic TVP-1012 (rasagiline) dose-activity response of monoamine oxidase A and B in the brain of the common marmoset. J Neural Transm [Suppl] 52:277–284

    Google Scholar 

  • Green AR, Mitchell BD, Tordoff AF, Youdim MBH (1977) Evidence for dopamine deamination by both type A and B monoamine oxidase in rat brain in vivo and for the degree of inhibition of enzyme necessary for increased functional activity of dopamine and 5-hydroxytryptamine. Br J Pharmacol 60(3):343–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grimbsby J, Chen K, Wang LJ, Lan NC, Shih JC (1991) Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Acad Sci USA 88(9):3637–3641

    Article  Google Scholar 

  • Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L et al (1997) Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet 17(2):206–210

    Article  CAS  PubMed  Google Scholar 

  • Grunewald M, Johnson S, Lu D, Wang Z, Lomberk G et al (2012) Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression. J Biol Chem 287(29):24195–24206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo G, Ou XM, Roettger M, Shih JC (2008) The VNTR 2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: associations of MAOA promoter activity. Eur J Hum Genet 16(5):622–634

    Article  CAS  Google Scholar 

  • Gyárfás T, Knuutila J, Lindolm P, Rantamäki T, Castrén E (2010) Regulation of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) by anti-parkinsonian drug therapy in vivo. Cell Mol Neurobiol 30(3):361–369

    Article  PubMed  CAS  Google Scholar 

  • Hebert SS, De Strooper B (2007) miRNAs in neurodegeneration. Science 317(5842):1179–1180

    Article  PubMed  Google Scholar 

  • Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) by monoamine inhibitors. Nature 311(5985):467–469

    Article  CAS  PubMed  Google Scholar 

  • Hernan MA, Chechoway H, O’Brien R, Costa-Mallen P, De Vivo I et al (2002) MAOB intron 13 and COMT codon 158 polymorphisms, cigarette smoking, and the risk of PD. Neurology 58(9):1381–1387

    Article  CAS  PubMed  Google Scholar 

  • Hill J, Breen G, Quinn J, Tibu F, Sharp H, Pickles A (2013) Evidence for interplay between genes and maternal stress in utero: monoamine oxidase A polymorphism moderates effects of life events during pregnancy on infant negative emotionality at 5 weeks. Genes Brain Behav 12(3):388–396

    Article  CAS  PubMed  Google Scholar 

  • Hinds HL, Hendricks RW, Craig JW, Chen ZY (1992) Characterization of a highly polymorphic region near the first exon of the human MAOA gene containing a GT dinucleotide and a novel VNTR motif. Genomics 13(3):896–897

    Article  CAS  PubMed  Google Scholar 

  • Holschneider DP, Scremin OU, Huynh L, Chen K, Shih JC (1999) Lack of protection from ischemic injury of monoamine oxidase B-deficient mice following middle cerebral artery occlusion. Neurosci Lett 259(3):161–164

    Article  CAS  PubMed  Google Scholar 

  • Holt A, Berry MD, Boulton AA (2004) On the binding of monoamine oxidase inhibitors to some sites distinct from the MAO active site, and effects thereby elicited. Neuro Toxicol 25(1–2):251–266

    CAS  Google Scholar 

  • Houtkooper RH, Pirien E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-Y, Cate SP, Battistuzzi C, Oquendo MA, Brent D, Mann JJ (2004) An association between a functional polymorphism in the monoamine oxidase A gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 29(8):1498–1505

    Article  CAS  PubMed  Google Scholar 

  • Hubalek F, Binda C, Ki M, Herzig Y, Sterling J et al (2004) Inactivation of purified human recombinant monoamine oxidase A and B by rasagiline and its analogues. J Med Chem 47(7):1760–1768

    Article  CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M (2012) Type A monoamine oxidase is associated with induction of neuroprotective Bcl-2 by rasagiline, an inhibitor of type B monoamine oxidase. J Neural Transm 119(4):405–414

    Article  CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M (2013) Rasagiline and selegiline, inhibitors of type B monoamine oxidase, induce type A monoamine oxidase in human SH-SY5Y cells. J Neural Transm 120(3):435–444

    Article  CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Maruyama W, Naoi M (2015) Phenylethylamine a substrate of type B monoamine oxidase induces type A isoenzyme in human SH-SY5Y cells, but serotonin, a MAO-A inhibitor, does not (in preparation)

  • International Parkinson Disease Genomic Consortium (2011) Imputation of sequence variations for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):64–69

    Google Scholar 

  • Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C et al (2003) Parkin gene inactivation alters behavioral and dopamine neurotransmission in the mouse. Hum Mol Gen 12(18):2277–2291

    Article  CAS  PubMed  Google Scholar 

  • Itzhak Y, Stein I, Zhang S-H, Kassim CO, Cristante D (1991) Binding of σ-ligands to C57BL/6 mouse brain membranes: Effects of monoamine oxidase inhibitors and subcellular distribution studies suggest the existence of σ-receptor subtypes. J Pharm Exper Ther 257(1):141–148

    CAS  Google Scholar 

  • Jahng W, Houpt TA, Joh TH, Son JH (1998) Differential expression of monoamine oxidase A, serotonin transporter, tyrosine hydroxylase and norepinephrine transporter mRNA by anorexia and food deprivation. Brain Res Devel Brain Res 107(2):241–246

    Article  CAS  Google Scholar 

  • Jakubauskiene E, Janaviciute V, Peciuliene I, Söderkvist P, Kanopka A (2012) G/A polymorphism in intronic sequence affects the processing of MAO-B gene in patients with Parkinson disease. FEBS Lett 586(20):3698–3704

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Xin R, Lin S, Qian Y, Tang G, Wang D, Wu X (2001) Linkage studies between attention-deficit hyperactivity disorder and the monoamine oxidase genes. Am J Med Genet 105(8):783–788

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Jiang Q, Liu W, Feng J (2006) Parkin suppresses the expression of monoamine oxidases. J Biol Chem 281(13):8591–8599

    Article  CAS  PubMed  Google Scholar 

  • Johnson S, Stockmeier CA, Meyer JH, Austin MC, Albert PR et al (2011) The reduction of R1, a novel repressor protein for monoamine oxidase A, in major depressive disorder. Neuropsychopharmacology 36(10):2139–2148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17(7):30–36

    Article  Google Scholar 

  • Kabayama M, Sakoori K, Yamada K, Ornthanali VG, Ota M et al (2013) Rines E3 ubiquitin ligase regulates MAO-A levels and emotional responses. J Neurosci 33(32):12940–12953

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov S et al (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinnally EL, Huang YY, Haverly R, Burke AK, Galfalvy H et al (2009) Parental care moderates the influence of MAO-A-UVNTR genotype and childhood stressors on trait impulsivity and aggression in adult women. Psychiatr Genet 19(3):126–133

    Article  PubMed Central  PubMed  Google Scholar 

  • Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T et al (2010) SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disord 26(1–2):167–173

    Article  CAS  Google Scholar 

  • Konradi C, Riederer P, Youdim MB (1966) Hydrogen peroxide enhances the activity of monoamine oxidase type B but not of type A: a pilot study. J Neural Transm Suppl 22:61–73

    Google Scholar 

  • Krysiak JM, Kreuzer J, Macheroux P, Hermetter A, Sieber SA, Breinbauer R (2012) Activity-based probes for studying the activity of flavin-dependent oxidases and the protein target profiling of monoamine oxidase inhibitors. Angew Chem Int Ed 51(28):7035–7040

    Article  CAS  Google Scholar 

  • Lam EWF, Francis RE, Petkovic M (2006) FOXO transcription factors: key regulators of cell fate. Biochem Soc Trans 34(5):722–726

    Article  CAS  PubMed  Google Scholar 

  • Lamensdorf I, Youdim MB, Finberg JP (1996) Effect of long-term treatment with selective monoamine oxidase A and B inhibitors on dopamine release from rat striatum in vivo. J Neurochem 67(4):1532–1539

    Article  CAS  PubMed  Google Scholar 

  • Lee AK, Mojtahed-Jaberi M, Kyriakou T, Astarloa EAO, Arno M et al (2010) Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition 26(4):411–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levant B, Morgan KA, Ahlgren-Beckendorf JA, Grandy DK, Chen K et al (2001) Modulation of [3H]quinopirole binding at striatal D2 dopamine receptor by a monoamine-A-like site: evidence from radioligand studies and D2-receptor- and MAO(A)-deficient mice. Life Sci 70(2):229–241

    Article  CAS  PubMed  Google Scholar 

  • Libert S, Pointer K, Bell EL, Das A, Cohen DE et al (2011) SIRT1 Activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147(7):1459–1472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim LC, Powell J, Murray R, Gill M (1994) Monoamine oxidase A gene and bipolar affective disorders. Am J Hum Genet 54(6):1122–1124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Yoo MJ, Savonenko A, Stirling W, Price DL et al (2008) Amyloid pathology is associated with progressive monoaminergic neurodegeneration in a transgenic mouse model of Alzheimer’s disease. J Neurosci 28(51):13805–13814

    Article  CAS  PubMed  Google Scholar 

  • Lyles GA (1978) Effects of L-DOPA administration upon monoamine oxidase activity in rat tissues. Life Sci 22(7):603–609

    Article  CAS  PubMed  Google Scholar 

  • Magyar K (2011) Pharmacology of selegiline. Int Rev Neurobiol 100:65–84

    Article  CAS  PubMed  Google Scholar 

  • Malmberg K, Wargelius HL, Licherstein P, Oreland L, Larsson JO (2008) ADHD and disruptive behavior scores-association with MAO-A and 5-HTT genes and with platelet MAO-B activity in adolescents. BMC Psychiatry 8:28

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Márquez C, Poirier GL, Cordero M, Larsen MH, Groner A et al (2012) Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Transl Psychiatry 3:e216

    Article  Google Scholar 

  • Maruyama W, Naoi M (2013) “70th Birthday Professor Riederer” Induction of glial cell-line-derived and brain-derived neurotrophic factors by rasagiline and (−)deprenyl: a way to a disease-modifying therapy? J Neural Transm 120(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Akao Y, Youdim MB, Davis BA, Naoi M (2001) Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous neurotoxin, N-methyl(R)salsolinol. J Neurochem 78(4):727–735

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Nitta A, Shamoto-Nagai M, Hirata Y, Akao Y et al (2004) N-Propargyl-1-(R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-κB transcription factor. Neurochem Int 44(6):293–400

    Article  CAS  Google Scholar 

  • May T (1993) 1-Methyl-4-phenylpyridinium (MPP+) binds with high affinity to a β-carboline binding site localized on monoamine oxidase type A in rat brain. Neurosci Lett 162(1–2):55–58

    Article  CAS  PubMed  Google Scholar 

  • Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D et al (2006) Elevated monoamine oxidase A levels in the brain. An explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63(11):1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Meza-Sosa KF, Pedraza-Alva G, Pérez-Martinez L (2014) microRNAs: key triggers of neuronal cell fate. Front Cell Neurosci 8:175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miller JR, Edmondson DE (1999) Structure-activity relationship in the oxidation of para-substituted benzylamine analogues by recombinant human liver monoamine oxidase A. Biochemistry 38(41):13670–13683

    Article  CAS  PubMed  Google Scholar 

  • Morishima M, Harada N, Hara S, Sano H, Takahasi A et al (2006) Monoamine oxidase A activity and norepinephrine level in hippocampus determine hyperwheel running in SPORTS rats. Neuropsychopharmacology 31(12):2627–2638

    Article  CAS  PubMed  Google Scholar 

  • Muninos-Gemeno M, Espinosa-Parrilla Y, Guidi M, Kagerbauer B, Sipilä T et al (2010) Human microRNAs, miR-22, miR-138-2, miR-148a, and miR-488are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol Psychiatry 69(6):526–533

    Article  CAS  Google Scholar 

  • Murphy DL, Sims KB, Karoum F, de la Chapelle A, Norio R et al (1990) Marked amine and amine metabolite changes in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase. J Neurochem 54(1):242–247

    Article  CAS  PubMed  Google Scholar 

  • Nandigama RK, Edmondson DE (2000) Structure-activity relations in the oxidation of phenethylamine analogues by recombinant human liver monoamine oxidase A. Biochemistry 39(49):15258–15265

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W (2010) Monoamine oxidase inhibitors as neuroprotective agents in age-dependent neurodegenerative disorders. Curr Pharmaceut Design 16(25):2799–2817

    Article  CAS  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Yi H, Yamaoka T (2006) Involvement of type A monoamine oxidase in neurodegeneration: regulation of mitochondrial signaling leading cell death or neuroprotection. J Neural Transm Suppl 71:67–77

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Inaba-Hasegawa K, Akao Y (2011) Type A monoamine oxidase regulates life and death of neurons in neurodegeneration and neuroprotection. Int Rev Neurobiol 100:85–106

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Inaba-Hasegawa K (2013a) Revelation in neuroprotective functions of rasagiline and selegiline: the induction of distinct genes by different mechanisms. Expert Rev Neurother 13(6):671–684

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Yi H (2013b) Rasagiline prevents apoptosis induced by PK11195, a ligand of the outer membrane translocator protein (18 kDa), in SH-SY5Y cells through suppression of cytochrome c release from mitochondria. J Neural Transm 120(11):1539–1551

    Article  CAS  PubMed  Google Scholar 

  • Nedic G, Pivac N, Hercigonja DK, Jovancevic M, Curkovic KD, Muck-Seler D (2010) Platelet monoamine oxidase activity in children with attention-deficit/hyperactivity disorder. Psychiatry Res 175(3):252–255

    Article  CAS  PubMed  Google Scholar 

  • Nelson RJ, Trainor BC (2007) Neuronal mechanisms of aggression. Nat Rev Neurosci 8(7):536–546

    Article  CAS  PubMed  Google Scholar 

  • Nishimura AL, Guindalini C, Oliveira JR, Nitrini R, Bahia VS et al (2005) Monoamine oxidase a polymorphism in Brazilian patients: risk factor for late-onset Alzheimer’s disease? J Mol Neurosci 27:213–217

    Article  CAS  PubMed  Google Scholar 

  • Noorbakhsh F, Ramachandran R, Barsby N, Ellestad KK, LeBlanc A et al (2010) MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival. FASEB J 24(6):1799–1812

    Article  CAS  PubMed  Google Scholar 

  • Oreland L (2004) Platelet monoamine oxidase, personality and alcoholism: the rise, fall and resurrection. Neuro Toxicol 25(1–2):79–89

    CAS  Google Scholar 

  • Ou XM, Chen K, Shih JC (2004) Dual functions of transcription factors, transforming growth factor-β-inducible early gene (TIEG)2 and Sp3, are mediated by CACCC element and Sp1 sites of human monoamine oxidase (MAO) B gene. J Biol Chem 279(20):21021–21028

    Article  CAS  PubMed  Google Scholar 

  • Ou XM, Chen K, Shih JC (2006a) Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc Natl Acad Sci USA 103(29):10923–10928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ou XM, Chen K, Shih JC (2006b) Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. J Biol Chem 281(30):21512–21525

    Article  CAS  PubMed  Google Scholar 

  • Ou XM, Lu D, Johnson C, Chen K, Youdim MB et al (2009) Glyceraldehyde-3-phosphate-monoamine oxidase B-mediated cell death by ethanol is prevented by rasagiline and 1-R-aminoindan. Neurotox Res 16(2):148–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ou XM, Johnson C, Lu D, Johnson S, Paul IA et al (2011) Ethanol increases TIEG2–MAO B cell death cascade in the prefrontal cortex of ethanol-preferring rats. Neurotox Res 19(4):511–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ozaita A, Olmos G, Boronat MA, Lizcano JM, Mercedes Unzeta JMM et al (1997) Inhibition of monoamine oxidase A and B activities by imidazol(ine)/guanidine drugs, nature of the interaction and distinction from I2-imidazoline receptors in rat liver. Br J Pharm 121(5):901–912

    Article  CAS  Google Scholar 

  • Park YU, Jeong J, Lee H, Mun JY, Kim JH et al (2010) Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc Natl Acad Sci USA 107(41):17785–17790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pennington PR, Wei Z, Rui L, Dig JA, Graham B et al (2011) Alzheimer disease-related presenilin-1 variants exert distinct effects on monoamine oxidase-A activity in vitro. J Neural Transm 118(7):987–995

    Article  CAS  PubMed  Google Scholar 

  • Philibert RA, Wernett P, Plume J, Packer H, Brody GH, Beach RH (2011) Gene environmental interactions with a novel variable Monoamine oxidase A transcriptional enhancer are associated with antisocial personality disorder. Biol Psychol 87(3):366–371

    Article  PubMed Central  PubMed  Google Scholar 

  • Pinsonneault JK, Papp AC, Sadee W (2006) Allelic mRNA expression of X-linked monoamine oxidase a (MAOA) n human brain: dissection of epigenetic and genetic factors. Hum Mol Gen 15(17):2636–2649

    Article  CAS  PubMed  Google Scholar 

  • Pizzinat N, Marchal-Victorion S, Maurel A, Ordener C, Bompart G, Parini A (2003) Substrate-dependent regulation of MAO-A in rat mesangial cells: involvement of dopamine D2-like receptors. Am J Physiol Renal Physiol 284(1):F167–F174

    Article  CAS  PubMed  Google Scholar 

  • Raddatz R, Parini A, Lanier SM (1995) Imidazoline/guanidinium binding domains on monoamine oxidases. Relationship to subtypes of imidazoline-binding proteins and tissue-specific interaction of imidazoline ligands with monoamine oxidase-B. J Biol Chem 270(46):27961–27968

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Jiang H, Ma D, Nakaso K, Feng J (2011) Parkin degrades estrogen-related receptors to limit the expression of monoamine oxidases. Hum Mol Gen 20(6):1074–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riederer P, Lachenmayer L (2003) Selegiline’s neuroprotective capacity revisited. J Neural Transm 110(11):1273–1278

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Konradi C, Habenstreit G, Youdim MBH (1989) Neurochemical perspectives to the function of monoamine oxidase. Acta Neurol Scand 126(1):41–45

    Article  CAS  Google Scholar 

  • Riederer P, Lachenmayer L, Laux G (2004) Clinical applications of MAO-inhibitors. Curr Med Chem 11(13):2033–2043

    Article  CAS  PubMed  Google Scholar 

  • Ringman JM, Diaz-Olavarrieta C, Rodriguez Y, Chavez M, Paz F et al (2004) Female preclinical presenilin-1 mutation carriers unaware of their genetic status have higher levels of depression then their non-mutation carrier kin. J Neurol Neurosurg Psychiatry 75(3):500–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rivera M, Gutiérrez B, Molina E, Torres-González F, Bellón JA et al (2009) High-activity variants of the MAOA polymorphism increase the risk for depression in a large primary care sample. Am J Med Gent B Neuropsychiatry Genet 150B(3):395–402

    Article  CAS  Google Scholar 

  • Roberts RC (2007) Disrupted in schizophrenia (DISC1): integrating clinical and basic findings. Schizophrenia Bull 33(1):11–15

    Article  Google Scholar 

  • Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103(3):273–279

    Article  CAS  PubMed  Google Scholar 

  • Salichon N, Gaspar P, Upton AL, Picaud S, Hanoun N et al (2001) Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J Neurosci 21(3):884–896

    CAS  PubMed  Google Scholar 

  • Saura J, Kettler R, Da Prada M, Richards JG (1992) Quantitative enzyme radioautography with 3H-Ro 41-I 049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 12(5):1977–1999

    CAS  PubMed  Google Scholar 

  • Saura J, Bleuel Z, Ulrich J, Mendelowitsch A, Chen K et al (1996) Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 70(3):755–774

    Article  CAS  PubMed  Google Scholar 

  • Schmid T, Krüger M, Braun T (2007) NSCL-1 and -2 control the formation of precerebellar nuclei by orchestrating the migration of neuronal precursor cells. J Neurochem 102(6):2061–2072

    Article  CAS  PubMed  Google Scholar 

  • Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A (2003) The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor (ERR). J Boil Chem 278(11):9013–9018

    Article  CAS  Google Scholar 

  • Scott AL, Bortolato M, Chen K, Shih JC (2008) Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. NeuroReport 19(7):739–743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shekim WO, Bylund DB, Alexson J, Gaser RD, Jones SB et al (1986) Platelet MAO and measures of attention and impulsivity in boys with attention deficient disorder and hyperactivity. Psychiatry Res 18(2):179–188

    Article  CAS  PubMed  Google Scholar 

  • Shih JC, Thompson RF (1999) Monoamine oxidase in neuropsychiatry and behavior. Am J Hum Genet 65(3):593–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shih JC, Boyang J, Chen K (2011) Transcriptional regulation and multiple functions of MAO genes. J Neural Transm 118(7):979–986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimazu S, Katsuki H, Akaike A (1999) Deprenyl rescues dopaminergic neurons in organotypic slice cultures of neonatal rat mesencephalon from N-methyl-d-aspartate toxicity. Eur J Pharmacol 377(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui A, Hanson I, Anderson JK (2012) MAO-B elevation decreases parkins’s ability to efficiently clear damaged mitochondria: protective effects of rapamycin. Free Rad Res 46(8):1011–1018

    Article  CAS  Google Scholar 

  • Sims KB, de la Chapelle A, Norio R, Sankila EM, Hsu YP et al (1989) Monoamine oxidase deficiency in males with an X chromosome deletion. Neuron 2(1):1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Khan AJ, Shah PP, Shukla R, Khanna VK, Parmar D (2008) Polymorphism in environment responsive genes and association with Parkinson disease. Mol Cell Biochem 312(1–2):131–138

    Article  CAS  PubMed  Google Scholar 

  • Sprague JE, Nichols DE (1995) The monoamine oxidase inhibitor l-deprenyl protects against 3,4-methylenedioxymethamphetamine-induced lipid peroxidation and long-term serotonergic deficient. J Pharmacol Exp Ther 273(2):667–673

    CAS  PubMed  Google Scholar 

  • Sun Y, Zhang J, Yuan Y, Yu X, Shen Y, Xu Q (2012) Study of a possible role of the monoamine oxidase A (MAOA) gene in paranoid schizophrenia among a Chinese population. Am J Med Genet Part B 159B:104–111

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Tanaka S, Masliah E, Ueda K (2002) Association of monoamine oxidase A gene polymorphism with Alzheimer’s disease and Lewy body variant. Neurosci Lett 327(1):79–82

    Article  Google Scholar 

  • Tan EK, Khajavi M, Thornby JI, Nagamitsu S, Jankovic J, Ashizawa T (2000) Variability and validity of polymorphism association studies in Parkinson’s disease. Neurology 55(4):533–538

    Article  CAS  PubMed  Google Scholar 

  • Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB et al (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. J Neural Transm Suppl 60:77–100

    PubMed  Google Scholar 

  • Tatton WG, Chalmers-Redman RM, Ju WJ, Mammen M, Carlile GW et al (2002) Propargylamines induce antiapoptotic new protein synthesis in serum- and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301(2):753–764

    Article  CAS  PubMed  Google Scholar 

  • Tiihoren J, Rautiainen M-R, Ollila HM, Repo-Tiihonen E, Virkkunen M et al (2014) Genetic background of extreme violent behavior. Mol Psychiatry. doi:10.1038/mp.2014.130

    Google Scholar 

  • Tong J, Meyer JH, Furukawa Y, Boileau I, Chang LJ et al (2013) Distribution of monoamine oxidase proteins in human. J Cereb Blood Flow Metab 33(6):863–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Udemgba C, Johnson S, Stockmeier CA, Luo J, Albert PR et al (2014) The expression of KLF11 (TIEG2), a monoamine oxidase B transcriptional activator in the prefrontal cortex of human alcohol dependence. Alcohol Clin Exper Res 38(1):144–151

    Article  CAS  Google Scholar 

  • Wadia JS, Chalmers-Redman RME, Ju WJH, Garlile GW, Phillips JL et al (1998) Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (−)-deprenyl. J Neurosci 18(3):932–947

    CAS  PubMed  Google Scholar 

  • Wang CC, Borchert A, Ugun-Klusek A, Tang LY, Lui WT et al (2011) Monoamine oxidase A expression is vital for embryonic brain development by modulating developmental apoptosis. J Biol Chem 286(32):28322–28330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei Q, Yeung M, Jurma OP, Andersen JK (1996) Genetic elevation of monoamine oxidase levels in dopaminergic PC12 cells results in increased free radical damage and sensitivity to MPTP. J Neurosci Res 46(6):666–673

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Gabriel GG, Rui L, Cao X, Pennington PR et al (2012) Monoamine oxidase-A physically interacts with presenilin-1 (M146V) in the mouse cortex. J Alzheimers Dis 28(20):403–422

    CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Chillag-Talmor O, Youdim MBH (2005) Novel neuroprotective mechanism of action of rasagiline is associated with its propargyl moiety: interaction of Bcl-2 family members with PKC pathway. Ann N Y Acad Sci 1053:348–355

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Sagi Y, Drigues N, Youdim MBH (2009) Genomic and proteomic study to survey the mechanism of action of the anti-Parkinson’s disease drug, rasagiline compared with selegiline, in the rat brain. J Neural Transm 116(11):1456–1472

    Article  CAS  Google Scholar 

  • Widom CS, Brzustowicz LM (2006) MAOA and the “cycle of violence”: childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biol Psychiatry 60(7):684–689

    Article  CAS  PubMed  Google Scholar 

  • Willy P, Murray IR, Qian J, Busch BB, Stevens WC Jr et al (2004) Regulation of PPARγ coactivator 1α (PGC-1α) signaling by an estrogen-related receptor α (ERRα) ligand. Proc Natl Acad Sci USA 101(24):8912–8917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winblad B, Gottfries CG, Oreland L, Wiberg A (1979) Monoamine oxidase in platelets and brains of non-psychiatric and non-neurological geriatric patients. Med Biol 57(2):129–132

    CAS  PubMed  Google Scholar 

  • Wu JB, Shih JC (2011) Valproic acid induces monoamine oxidase A via Akt/forkhead box O1 activation. Mol Pharmacol 80(4):714–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu YH, Fischer DF, Swaab DF (2007) A promoter polymorphism in the monoamine oxidase A gene is associated with the pineal MAOA activity in Alzheimer’s disease patients. Brain Res 1167:13–19

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Jia YB, Zhang BY (2004) Association study of an SNP combination pattern in the dopaminergic pathway in paranoid schizophrenia: a novel strategy for complex disorders. Mol Psychiatry 9(5):510–521

    Article  CAS  PubMed  Google Scholar 

  • Yelamanchili SV, Chaudhuri AD, Chen L-N, Xiong H, Fo HS (2010) MicroRNA-21 dysregulates the expression of MEF2Cin neurons in monkey and human SIV/HIV neurological disease. Cell Death Disease 1:e77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yi H, Akao Y, Maruyama W, Chen K, Shih, Naoi M (2006) Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. J Neurochem 96(2):541–549

    Article  CAS  PubMed  Google Scholar 

  • Youdim MBH, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147(Suppl 1):S287–S296

    PubMed Central  CAS  PubMed  Google Scholar 

  • Youdim MBH, Tipton KF (2002) Rat striatal monoamine oxidase-B inhibition by l-deprenyl and rasagiline: its relationship to 2-phenylethylamine-induced stereotype and Parkinson’s disease. Parkinsonism Relat Disord 8(4):247–253

    Article  CAS  PubMed  Google Scholar 

  • Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309

    Article  CAS  PubMed  Google Scholar 

  • Yu PH, Davis BA, Fang J, Boulton AA (1994) Neuroprotective effects of some monoamine oxidase-B inhibitors against DSP-4-induced noradrenaline depletion in the mouse hippocampus. J Neurochem 63(5):1820–1828

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen K, Shih JC, Teng CT (2006) Estrogen-related receptors-stimulated monoamine oxidase B promoter activity is down-regulated by estrogen receptors. Mol Endocrinol 20(7):1547–1561

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sun S, Herreman A, De Strooper B, Bezprozvanny I (2010) Role of presenilins in neuronal calcium homeostasis. J Neurosci 30(25):8566–8580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu QS, Chen K, Shih JC (1994) Bidirectional promoter of human monoamine oxidase A (MAO-A) controlled by transcriptional factor Sp1. J Neurosci 14(12):7393–7403

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Grant for Longevity Science from the Ministry of Health, Labour and Welfare, Japan, and also by “Verein zur Erforschung von Neurodegeneration, Neuroprotektion, Neuroregeneration und Therapie e. V.”, Würzburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Naoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naoi, M., Riederer, P. & Maruyama, W. Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression. J Neural Transm 123, 91–106 (2016). https://doi.org/10.1007/s00702-014-1362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1362-4

Keywords

Navigation