Skip to main content

Advertisement

Log in

Fatty acids rehabilitated long-term neurodegenerative: like symptoms in olfactory bulbectomized rats

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Our previous study demonstrated that an olfactory bulbectomy in rats induced short-term, multifaceted, devastating Alzheimer’s-like effects, which included cognitive impairment, hyperactivity, hyperthermia, and increased levels of homocysteine and pro-inflammatory cytokines, including IL-17A. In addition, the rats exhibited an increase in the hyperphosphorylation of brain Tau proteins and in the number of neurofibrillary tangles. Here, we examined the long-term effects of the surgery and found that olfactory bulbectomy also rendered the rats to become anemic with brain iron overload. Additionally, a significant reduction in the membrane fluidity index in frontal cortex synaptosomes was found. Treatment with a mixture of n − 3/n − 6 of fatty acids restored the unwanted effect. The beneficial effects of fatty acids are mediated via the effects of fatty acids on the neuronal membrane structure and fluidity. These findings are similar to Alzheimer’s symptoms, which suggest this model can be used as an animal model for Alzheimer’s disease. We recommend using this model to scan potential new anti-Alzheimer’s drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ADHD:

Attention deficit hyperactivity disorder

EAE:

Experimental autoimmune encephalomyelitis

EFA:

Essential fatty acid

MANOVA:

Multivariate analysis of variance

OBX:

Olfactory bulbectomy

PUFA:

Polyunsaturated fatty acids

SD:

Standard deviation

References

  • Ahmed HH (2010) Modularly effects of vitamin E, acetyl-l-carnitine and alpha-liponic acid on new potential biomarkers for Alzheimer’s disease in rat model. Exper Toxicol Patholo 64:549–556

    Google Scholar 

  • Akatsu H, Hori A, Yamamoto T, Yoshida M, Mimuro M, Hashizume Y, Tooyama I, Yezdimer EM (2012) Transition metal abnormalities in progressive dementias. Biometals 25:337–350

    CAS  PubMed  Google Scholar 

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson BM, Ma DW (2009) Are all n − 3 polyunsaturated fatty acids created equal? Lipids Health Dis 8:33–54

    PubMed Central  PubMed  Google Scholar 

  • Araki A, Sako Y (1987) Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 422:43–52

  • Bakirdere S, Kizilkan N, Yaman M (2010) Determination of zinc, copper, iron, and manganese in different regions of lamb brain. Biol Trace Elem Res. 142:492–499

    PubMed  Google Scholar 

  • Biddle C (2006) The neurobiology of the human febrile response. AANA J 74:145–150

    PubMed  Google Scholar 

  • Blanchard H, Pédrono F, Boulier-Monthéan N, Catheline D, Rioux V, Legrand P (2013) Comparative effects of well-balanced diets enriched in α-linolenic or linoleic acids on LC-PUFA metabolism in rat tissues. Prostaglandins Leukot Essent Fatty Acids 88:383–389

    CAS  PubMed  Google Scholar 

  • Bobkova N, Vorobyov V, Medvinskaya N, Aleksandrova I, Nesterova I (2008) Interhemispheric EEG differences in olfactory bulbectomized rats with different cognitive abilities and brain beta-amyloid levels. Brain Res 1232:185–194

    CAS  PubMed  Google Scholar 

  • Bogdanski P, Pupek-Musialik D, Dytfeld J, Lacinski M, Jablecka A, Jakubowski H (2007) Plasma homocysteine is a determinant of tissue necrosis factor-alpha in hypertensive patients. Biomed Pharmacother 62:360–365

    PubMed  Google Scholar 

  • Boldyrev AA, Johnson P (2007) Homocysteine and its derivatives as possible modulators of neuronal and non-neuronal cell glutamate receptors in Alzheimer’s disease. J Alzheimers Dis 11:219–228

    CAS  PubMed  Google Scholar 

  • Borre Y, Lemstra S, Westphal KG, Morgan ME, Olivier B, Oosting RS (2012a) Celecoxib delays cognitive decline in an animal model of neurodegeneration. Behav Brain Res 234(2):285–291

    CAS  PubMed  Google Scholar 

  • Borre Y, Bosman E, Lemstra S, Westphal KG, Olivier B, Oosting RS (2012b) Memantine partly rescues behavioral and cognitive deficits in an animal model of neurodegeneration. Neuropharmacology 62:2010–2017 [Epub 2012 Jan 11]

    CAS  PubMed  Google Scholar 

  • Brenna JT, Salem N Jr, Sinclair AJ, Cunnane SC (2009) International Society for the Study of Fatty Acids and Lipids, ISSFAL. alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids 80(2–3):85–91

    CAS  PubMed  Google Scholar 

  • Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8:131–136

    CAS  PubMed  Google Scholar 

  • Cain DP (1974) The role of the olfactory bulb in limbic mechanisms. Psychol Bull 81:654–671

    CAS  PubMed  Google Scholar 

  • Cain DP, Paxinos G (1974) Olfactory bulbectomy and mucosal damage: effects on copulation, irritability, and interspecific aggression in male rats. J Comp Physiol Psychol 86:202–212

    CAS  PubMed  Google Scholar 

  • Calcagnetti DJ, Quatrella LA, Schechter MD (1996) Olfactory bulbectomy disrupts the expression of cocaine-induced conditioned place preference. Physiol Behav 59:597–604

    CAS  PubMed  Google Scholar 

  • Carrié I, Clément M, de Javel D, Francès H, Bourre JM (2000) Specific phospholipid fatty acid composition of brain regions in mice. Effects of n − 3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J Lipid Res 41:465–472

    PubMed  Google Scholar 

  • Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, Miossec P (1999) Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42:963–970

    CAS  PubMed  Google Scholar 

  • Cole GM, Ma QL, Frautschy SA (2009) Omega-3 fatty acids and dementia. Prostaglandins Leukot Essent Fatty Acids 81:213–221

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cunnane SC, Schneider JA, Tangney C, Tremblay-Mercier J, Fortier M, Bennett DA, Morris MC (2012) Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 29:691–697

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dangour AD, Andreeva VA, Sydenham E, Uauy R (2012) Omega 3 fatty acids and cognitive health in older people. Br J Nutr 107(Suppl 2):S152–S158

    CAS  PubMed  Google Scholar 

  • D’Aquila PS, Rossi R, Rizzi A, Galistu A (2010) Possible role of dopamine D1-like and D2-like receptors in behavioural activation and “contingent” reward evaluation in sodium-replete and sodium-depleted rats licking for NaCl solutions. Pharmacol Biochem Behav 101:99–106

    Google Scholar 

  • Das UN (2008) Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia and Alzheimer’s disease—but how and why? Prostaglandins Leukot Essent Fatty Acids 78:11–19

    CAS  PubMed  Google Scholar 

  • Delplanque B, Du Q, Agnani G, Le Ruyet P, Martin JC (2013) A dairy fat matrix providing alpha-linolenic acid (ALA) is better than a vegetable fat mixture to increase brain DHA accretion in young rats. Prostaglandins Leukot Essent Fatty Acids 88:115–1120

    CAS  PubMed  Google Scholar 

  • Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, Mondal A, Bedo J, Bush AI, Brown B, De Ruyck K, Ellis KA, Fowler C, Gupta VB, Head R, Macaulay SL, Pertile K, Rowe CC, Rembach A, Rodrigues M, Rumble R, Szoeke C, Taddei K, Taddei T, Trounson B, Ames D, Masters CL, Martins RN, Alzheimer’s Disease Neuroimaging Initiative; Australian Imaging Biomarker and Lifestyle Research Group (2012) Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol. 69:1318–1325

    PubMed  Google Scholar 

  • Douma TN, Borre Y, Hendriksen H, Olivier B, Oosting RS (2012) Simvastatin improves learning and memory in control but not in olfactory bulbectomized rats. Psychopharmacol 216:537–544

    Google Scholar 

  • Drucker-Colín R, García-Hernández F (1991) A new motor test sensitive to aging and dopaminergic function. J Neurosci Methods 39:153–161

    PubMed  Google Scholar 

  • Emanuele E, Martinelli V, Abbiati V, Ricevuti G (2012) Linking atherosclerosis to Alzheimer’s disease: focus on biomarkers. Front Biosci (Elite Ed) 4:700–710

    Google Scholar 

  • Escanilla O, Yuhas C, Marzan D, Linster C (2009) Dopaminergic modulation of olfactory bulb processing affects odor discrimination learning in rats. Behav Neurosci 123:828–833

    PubMed Central  CAS  PubMed  Google Scholar 

  • Evans SS, Fisher DT, Skitzki JJ, Chen Q (2008) Targeted regulation of a lymphocyte-endothelial-interleukin-6 axis by thermal stress. Int J Hyperthermia 24:67–78

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA (1998) Lipid peroxides in the free radical pathophysiology of brain diseases. Cell Mol Neurobiol 18:599–608

    CAS  PubMed  Google Scholar 

  • Faux NG, Rembach A, Wiley J, Ellis KA, Ames D, Fowler CJ, Martins RN, Pertile KK, Rumble RL, Trounson B, Masters CL, The AIBL Research Group, Bush AI (2014) An anemia of Alzheimer’s disease. Mol Psychiatry. doi:10.1038/mp.2013.178 [Epub ahead of print]

    Google Scholar 

  • Förster S, Vaitl A, Teipel SJ, Yakushev I, Mustafa M, la Fougère C, Rominger A, Cumming P, Bartenstein P, Hampel H, Hummel T, Buerger K, Hundt W, Steinbach S (2010) Functional representation of olfactory impairment in early Alzheimer’s disease. J Alzheimers Dis 22:581–591

    PubMed  Google Scholar 

  • Fujino S, Andoh A, Bamba S (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52:65–70

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao L, Zeng XN, Guo HM, Wu XM, Chen HJ, Di RK, Wu Y (2012) Cognitive and neurochemical alterations in hyperhomocysteinemic rat. Neurol Sci 33:39–43

    PubMed  Google Scholar 

  • Gonfrier S, Andrieu S, Renaud D, Vellas B, Robert PH (2012) Course of neuropsychiatric symptoms during a 4-year follow up in the REAL-FR cohort. J Nutr Health Aging 16:134–137

    CAS  PubMed  Google Scholar 

  • Gori AM, Sofi F, Marcucci R, Giusti B, Franco Gensini G, Abbate R (2007) Association between homocysteine, vitamin B(6) concentrations and inflammation. Clin Chem Lab Med 45:1728–1736

    CAS  PubMed  Google Scholar 

  • Greiner RS, Moriguchi T, Slotnick BM, Hutton A, Salem N (2001) Olfactory discrimination deficits in n − 3 fatty acid-deficient rats. Physiol Behav 72:379–385

    CAS  PubMed  Google Scholar 

  • Hare D, Ayton S, Bush A, Lei P (2012) A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci. 5((article 34)):1–19

    Google Scholar 

  • Harrington LE, Mangan PR, Weaver CT (2006) Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 18:349–356

    CAS  PubMed  Google Scholar 

  • Herrmann W, Obeid R (2011) Homocysteine: a biomarker in neurodegenerative diseases. Clin Chem Lab Med 49:435–441

    CAS  PubMed  Google Scholar 

  • Hichami A, Datiche F, Ullah S, Liénard F, Chardigny JM, Cattarelli M, Khan NA (2007) Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats. Behav Brain Res 184:1–10

    CAS  PubMed  Google Scholar 

  • Hu J, Wang X, Liu D, Wang Q, Zhu LQ (2012) Olfactory deficits induced microfilament hyperphosphorylation. Neurosci Lett 506:180–183

    CAS  PubMed  Google Scholar 

  • Hymowitz SG, Filvaroff EH, Yin JP, Lee J (2001) IL-17 s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J 20:5332–5341

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kelly JP, Norman TR, OHalloran A, Leonard BE (1996) Home cage and open-field response to singly housed olfactory bulbectomised rats. Med Sci Res 24:335–337

    Google Scholar 

  • Kemppainen N, Laine M, Laakso MP, Kaasinen V, Någren K, Vahlberg T, Kurki T, Rinne JO (2003) Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer’s disease. Eur J Neurosci 18:149–154

    CAS  PubMed  Google Scholar 

  • Klegeris A, Schulzer M, Harper DG, McGeer PL (2007) Increase in core body temperature of Alzheimer’s disease patients as a possible indicator of chronic neuroinflammation: a meta-analysis. Gerontology 53:7–11

    PubMed  Google Scholar 

  • Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol 177:566–573

    CAS  PubMed  Google Scholar 

  • Kontis D, Theochari E (2012) Dopamine in anorexia nervosa: a systematic review. Behav Pharmacol 23:496–515

    CAS  PubMed  Google Scholar 

  • Kyle DJ, Schaefer E, Patton G, Beiser A (1999) Low serum docosahexaenoic acid is a significant risk factor for Alzheimer’s dementia. Lipids 34(Suppl):S245

    CAS  PubMed  Google Scholar 

  • Langkammer C, Ropele S, Pirpamer L, Fazekas F, Schmidt R (2014) MRI for iron mapping in Alzheimer’s disease. Neurodegener Dis 13:189–191

    CAS  PubMed  Google Scholar 

  • Laurijssens B, Aujard F, Rahman A (2013) Animal models of Alzheimer’s disease and drug development. Drug Discov Today Technol 10:319–327

    Google Scholar 

  • Leuner K, Kurz C, Guidetti G, Orgogozo JM, Müller WE (2010) Improved mitochondrial function in brain aging and Alzheimer disease—the new mechanism of action of the old metabolic enhancer piracetam. Front Neurosci 4:44. doi:10.3389/fnins.2010.00044

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu C, Min S, Wei K, Liu D, Dong J, Luo J, Liu XB (2012) Effect of electroconvulsive shock on the glutamate level and the hyperphosphorylation of protein tau in depression rat models whose olfactory bulbs were removed. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 34:216–221

    CAS  PubMed  Google Scholar 

  • Loopuijt LD, Sebens JB (1990) Loss of dopamine receptors in the olfactory bulb of patients with Alzheimer’s disease. Brain Res 529:239–244

    CAS  PubMed  Google Scholar 

  • Martorana A, Di Lorenzo F, Esposito Z, Lo Giudice T, Bernard G, Caltagirone C, Koch G (2013) Dopamine D(2)-agonist Rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology 64:108–113

    CAS  PubMed  Google Scholar 

  • Mazereeuw G, Lanctôt KL, Chau SA, Swardfager W, Herrmann N (2012) Effects of omega-3 fatty acids on cognitive performance: a meta-analysis. Neurobiol Aging 33:17–29

    Google Scholar 

  • McAllister F, Henry A, Kreindler JL, Dubin PJ (2005) Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J Immunol 175:404–412

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moore SA, Yoder E, Spector AA (1990) Role of the blood-brain barrier in the formation of long-chain omega-3 and omega-6 fatty acids from essential fatty acid precursors. J Neurochem 55:391–402

    CAS  PubMed  Google Scholar 

  • Mullington J, Korth C, Hermann DM, Orth A, Galanos C, Holsboer F, Pollmächer T (2000) Dose-dependent effects of endotoxin on human sleep. Am J Physiol Regul Integr Comp Physiol 278:R947–R955

  • Nguemeni C, Gouix E, Bourourou M, Heurteaux C, Blondeau N (2013) Alpha-linolenic acid: a promising nutraceutical for prevention of stroke. PharmaNutrition 1:1–8

    CAS  Google Scholar 

  • Papatheodorou L, Weiss N (2007) Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signal 9:1941–1958

    CAS  PubMed  Google Scholar 

  • Quan MN, Zhang N, Wang YY, Zhang T, Yang Z (2011) Possible antidepressant effects and mechanisms of memantine in behaviors and synaptic plasticity of a depression rat model. Neuroscience 19:88–97

    Google Scholar 

  • Reeves S, Mehta M, Howard R, Grasby P, Brown R (2010) The dopaminergic basis of cognitive and motor performance in Alzheimer’s disease. Neurobiol Dis 37:477–482

    CAS  PubMed  Google Scholar 

  • Ronnemaa E, Zethelius B, Vessby B, Lannfelt L, Byberg L, Kilander L (2012) Serum fatty acid composition and the risk for Alzheimer’ disease: a longitudinal population study. Eur J Clin Nutr 66:885–890

    CAS  PubMed  Google Scholar 

  • Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. Scientific World Journal 2012:756357

    PubMed Central  PubMed  Google Scholar 

  • Saragat B, Buffa R, Mereu E, Succa V, Cabras S, Mereu RM, Viale D, Putzu PF, Marini E (2012) Nutritional and psycho-functional status in elderly patients with Alzheimer’s disease. J Nutr Health Aging 16:231–236

    CAS  PubMed  Google Scholar 

  • Schiffelholz T, Lancel M (2001) Sleep changes induced by lipopolysaccharide in the rat are influenced by age. Am J Physiol Regul Integr Comp Physiol 280:398–403

    Google Scholar 

  • Seshadri S (2012) Homocysteine and the risk of dementia. Clin Chem 58:1059–1060

    CAS  PubMed  Google Scholar 

  • Sharma HS, Castellani RJ, Smith MA, Sharma A (2012) The blood-brain barrier in Alzheimer’s disease: novel therapeutic targets and nanodrug delivery. Int Rev Neurobiol 102:47–90

    CAS  PubMed  Google Scholar 

  • Sipe JC, Lee P, Beutler E (2002) Brain iron metabolism and neurodegenerative disorders. Dev Neurosci 24(2–3):188–196

    CAS  PubMed  Google Scholar 

  • Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29:627–647

    PubMed  Google Scholar 

  • Song C, Manku MS, Horrobin DF (2008) Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. J Nutr 138:954–963

    CAS  PubMed  Google Scholar 

  • Sponne I, Fifre A, Koziel V, Oster T, Olivier JL, Pillot T (2004) Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of amyloid-beta peptide. FASEB J 18:836–838

    CAS  PubMed  Google Scholar 

  • Stiles L, Zheng Y, Darlington CL, Smith PF (2012) The D2 dopamine receptor and locomotor hyperactivity following bilateral vestibular deafferentation in the rat. Behav Brain Res 227:150–158

    CAS  PubMed  Google Scholar 

  • Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EFA and DHA: health benefits throughout life. Adv Nutr 3:1–7

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tan ZS, Seshadr S (2010) Inflammation in the Alzheimer’s disease cascade: culprit or innocent bystander? Alzheimers Res Ther 12:6

    Google Scholar 

  • Tan ZS, Harris WS, Beiser AS, Au R, Himali JJ, Debette S, Pikula A, Decarli C, Wolf PA, Vasa RS, Robins SJ, Seshadri S (2012) Red blood cell ω-3 fatty acid levelsand markers of accelerated brain aging. Neurology 78:658–664

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka Y, Meguro K, Yamaguchi S, Ishii H, Watanuki S, Funaki Y, Yamaguchi K, Yamadori A, Iwata R, Itoh M (2003) Decreased striatal D2 receptor density associated with severe behavioral abnormality in Alzheimer’s disease. Ann Nucl Med 17:567–573

    PubMed  Google Scholar 

  • Theodoropoulou A, Metallinos IC, Psyrogiannis A, Vagenakis GA, Kyriazopoulou V (2012) Ghrelin and leptin secretion in patients with moderate Alzheimer’s disease. J Nutr Health Aging 16:472–477

    CAS  PubMed  Google Scholar 

  • Uslu S, Akarkarasu ZE, Ozbabalik D, Ozkan S, Colak O, Demirkan ES, Ozkiris A, Demirustu C, Alatas O (2012) Levels of amyloid beta-42, interleukin-6 and tumor necrosis factor-alpha in Alzheimer’s disease and vascular dementia. Neurochem Res 37:1554–1559

    CAS  PubMed  Google Scholar 

  • Van Dam D, De Deyn PP (2011) Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol 164:1285–1300

    PubMed Central  PubMed  Google Scholar 

  • Van Hoomissen J, Kunrath J, Dentlinger R, Lafrenz A, Krause M, Azar A (2011) Cognitive and locomotor/exploratory behavior after chronic exercise in the olfactory bulbectomy animal model of depression. Behav Brain Res 222:106–116

    PubMed  Google Scholar 

  • Van Someren EJ, Raymann RJ, Scherder EJ, Daanen HA, Swaab DF (2002) Circadian and age-related modulation of thermoreception and temperature regulation: mechanisms and functional implications. Ageing Res Rev 1:721–778

    PubMed  Google Scholar 

  • Weinstein G, Wolf PA, Beiser AS, Au R, Seshadri S (2012) Risk estimations, risk factors, and genetic variants associated with Alzheimer’s disease in selected publications from the Framingham Heart Study. J Alzheimers Dis [Epub ahead of print] PubMed PMID: 22796871

  • Wesson DW, Borkowski AH, Landreth GE, Nixon RA, Levy E, Wilson DA (2011) Sensory network dysfunction, behavioral impairments, and their reversibility in an Alzheimer’s β-amyloidosis mouse model. J Neurosci 31:15962–15971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whittaker VP, Barker LA (1972) The subcellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles. In: Fried R (ed) Methods in Neurochemistry. Marcel Dekker, New York, pp 1–52

    Google Scholar 

  • Yamamoto Y, Shioda N, Han F, Moriguchi S, Fukunaga K (2010) Donepezil-induced neuroprotection of acetylcholinergic neurons in olfactory bulbectomized mice. Yakugaku Zasshi 130:717–721

    CAS  PubMed  Google Scholar 

  • Yang X, Askarova S, Lee JC (2010) Membrane biophysics and mechanics in Alzheimer’s disease. Mol Neurobiol 41:138–148

    CAS  PubMed  Google Scholar 

  • Yehuda S (1976) Effects of specific brain lesions on the thermal responses of rats to D-amphetamine. J Neurosci Res 2:31–38

    CAS  PubMed  Google Scholar 

  • Yehuda S (2012) Polyunsaturated fatty acids as putative cognitive enhancers. Med Hypotheses 79:456–461

    CAS  PubMed  Google Scholar 

  • Yehuda S (2013) The Significance of Omega-3/omega-6 ratio to aging brain functions. Agro F Sci (in press)

  • Yehuda S, Carasso RL (1993) Modulation of learning, pain thresholds, and thermoregulation in the rat by preparation of free purified α- linolenic and linoleic acids: determination of optimal n − 3 to n − 6 ratio. Proc Natl Acad Sci USA 90:10345–10349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yehuda S, Rabinovitz S (2014) Olfactory bulbectomy as model for Alzheimer’: the protective role of essential fatty acids. Pharm Nutr 2:12–18

    CAS  Google Scholar 

  • Yehuda S, Sheleff P (1985) The effects of MIF-I, beta-endorphin and alpha-MSH on d-amphetamine induced paradoxical behavioral thermoregulation: possible involvement of the dopaminergic system. Peptides 6:189–192

    CAS  PubMed  Google Scholar 

  • Yehuda S, Youdim MB (1989) Brain iron: a lesson from animal models. Am J Clin Nutr 50(3 Suppl):618–625

    CAS  PubMed  Google Scholar 

  • Yehuda S, Carraso RL, Mostofsky DI (1995) Essential fatty acid prEFAration (SR-3) rehabilitates learning deficits induced by AF64A and 5,7-DHT. NeuroReport 6:511–515

    CAS  PubMed  Google Scholar 

  • Yehuda S, Rabinovtz S, Carasso RL, Mostofsky DI (1996) Essential fatty acids preparation (SR-3) improves Alzheimer’s patients quality of life. Int J Neurosci 87:141–149

    CAS  PubMed  Google Scholar 

  • Yehuda S, Rabinovitz S, Mostofsky DI, Huberman M, Sredni B (1997) Essential fatty acid preparation improves biochemical and cognitive functions in experimental allergic encephalomyelitis rats. Eur J Pharmacol 328:23–29

    CAS  PubMed  Google Scholar 

  • Yehuda S, Rabinovitz S, Mostofsky DI (1998) Modulation of learning and neuronal membrane composition in the rat by essential fatty acid preparation: time-course analysis. Neurochem Res 23:627–634

    CAS  PubMed  Google Scholar 

  • Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI (2002) The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging 23:843–853

    CAS  PubMed  Google Scholar 

  • Yehuda S, Sredni B, Carasso RL, Kenigsbuch-Sredni D (2009) REM sleep deprivation in rats results in inflammation and interleukin-17 elevation. J Interferon Cytokine Res 29:393–398

    CAS  PubMed  Google Scholar 

  • Yehuda S, Rabinovitz-Shenkar S, Carasso RL (2011) Effects of essential fatty acids in iron deficient and sleep-disturbed attention deficit hyperactivity disorder (ADHD) children. Eur J Clin Nutr 65(10):1167–1169

    CAS  PubMed  Google Scholar 

  • Youdim MB, Yehuda S (2000) The neurochemical basis of cognitive deficits induced by brain iron deficiency: involvement of dopamine-opiate system. Cell Mol Biol 46(3):491–500

    CAS  PubMed  Google Scholar 

  • Zhang W, Li P, Hu X, Zhang F, Chen J, Gao Y (2011) Omega-3 polyunsaturated fatty acids in the brain: metabolism and neuroprotection. Front Biosci (Landmark Ed) 16:2653–2670

    CAS  Google Scholar 

  • Zheng H, Fridkin M, Youdim M (2014) From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals (Basel) 7(2):113–135

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. R. Luria for his help during the study. We also thank the Rose K. Ginsburg Chair for Research into Alzheimer’s disease and The William Farber Center for Alzheimer Research for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shlomo Yehuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yehuda, S., Rabinovitz, S. Fatty acids rehabilitated long-term neurodegenerative: like symptoms in olfactory bulbectomized rats. J Neural Transm 122, 629–641 (2015). https://doi.org/10.1007/s00702-014-1321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1321-0

Keywords

Navigation