Skip to main content

Advertisement

Log in

Brain catalase in the streptozotocin-rat model of sporadic Alzheimer’s disease treated with the iron chelator–monoamine oxidase inhibitor, M30

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Low intracerebroventricular (icv) doses of streptozotocin (STZ) produce regionally specific brain neurochemical changes in rats that are similar to those found in the brain of patients with sporadic Alzheimer’s disease (sAD). Since oxidative stress is thought to be one of the major pathologic processes in sAD, catalase (CAT) activity was estimated in the regional brain tissue of animals treated intracerebroventricularly with STZ and the multitarget iron chelator, antioxidant and MAO-inhibitor M30 [5-(N-methyl-N-propargylaminomethyl)-8-hydroxyquinoline]. Five-day oral pre-treatment of adult male Wistar rats with 10 mg/kg/day M30 dose was followed by a single injection of STZ (1 mg/kg, icv). CAT activity was measured colorimetrically in the hippocampus (HPC), brain stem (BS) and cerebellum (CB) of the control, STZ-, M30- and STZ + M30-treated rats, respectively, 4 weeks after the STZ treatment. STZ-treated rats demonstrated significantly lower CAT activity in all three brain regions in comparison to the controls (p < 0.05 for BS and CB, p < 0.01 for HPC). M30 pre-treatment of the control rats did not influence the CAT activity in HPC and CB, but significantly increased it in BS (p < 0.05). M30 pre-treatment of STZ-treated rats significantly increased CAT activity in the HPC in comparison to the STZ treatment alone (p < 0.05) and normalized to the control values. These findings are in line with the assumption that reactive oxygen species contribute to the pathogenesis of STZ in a rat model of sAD and indicate that multifunctional iron chelators such as M30 might also have beneficial effects in this non-transgenic sAD model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal R, Tyagi E, Shukla R, Nath C (2009) A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 56:779–787

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Rodriguez AM, Melendez JA, Cederbaum AI (1999) Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury. J Biol Chem 274:26217–26224

    Article  CAS  PubMed  Google Scholar 

  • Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S (2011) Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol 68:51–57

    Article  PubMed Central  PubMed  Google Scholar 

  • Bandyopadhyay S, Cahill C, Balleidier A, Huang C, Lahiri DK, Huang X, Rogers JT (2013) Novel 5′ untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: implications for down syndrome and Alzheimer’s disease. PLoS One 8:e65978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baskin DG, Figlewicz DP, Woods SC, Porte D Jr, Dorsa DM (1987) Insulin in the brain. Annu Rev Physiol 49:335–347

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Kahana N, Kampel V, Warshawsky A, Youdim MBH (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 46:254–263

    Article  CAS  Google Scholar 

  • Cohen G, Dembiec D, Markus J (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 34:30–38

    Article  CAS  PubMed  Google Scholar 

  • De Felice FG (2013) Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 123:531–539

    Article  PubMed Central  PubMed  Google Scholar 

  • de la Monte SM (2013) Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv 10:1699–1709

    Article  PubMed  Google Scholar 

  • Deisseroth A, Dounce AL (1970) Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50:319–375

    CAS  PubMed  Google Scholar 

  • Faller P, Hureau C, Berthoumieu O (2013) Role of metal ions in the self-assembly of the Alzheimer’s amyloid-β peptide. Inorg Chem 52:12193–12206

    Article  CAS  PubMed  Google Scholar 

  • Gal S, Fridkin M, Amit T, Zheng H, Youdim MBH (2006) M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson’s disease. J Neural Transm Suppl 70:447–456

    Article  CAS  PubMed  Google Scholar 

  • Götz M, Freyberger A, Hauer E, Burger R, Heckers S, Sofic E, Jellinger K, Hebenstreit G, Beckmann H, Riederer P (1992) Susceptibility to brains from patients with Alzheimer’s disease to oxygen-stimulated lipid peroxidation and differential scanning calorimetry. Dementia 3:213–222

    Google Scholar 

  • Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770

    Article  PubMed  Google Scholar 

  • Grünblatt E, Bartl J, Riederer P (2011) The link between iron, metabolic syndrome, and Alzheimer’s disease. J Neural Transm 118:371–379

    Article  PubMed  Google Scholar 

  • Gsell W, Conrad R, Hickethier M, Sofic E, Froelich L, Wichart I, Jellinger K, Moll G, Ransmayr G, Beckmann H (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem 64:1216–1223

    Article  CAS  PubMed  Google Scholar 

  • Hampton MB, Orrenius S (1997) Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 414:552–556

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Casadesus G, Petersen RB, Perry G, Smith MA (2004) Oxidative stress and redox-active iron in Alzheimer’s disease. Ann N Y Acad Sci 1012:179–182

    Article  CAS  PubMed  Google Scholar 

  • Ishrat T, Khan M, Hoda M, Yousuf M, Ahmad M, Ansari A, Ahmad A, Islam F (2006) Coenzyme Q10 modulates cognitive impairment against icv injection of streptozotocin in rats. Behav Brain Res 171:9–16

    Article  CAS  PubMed  Google Scholar 

  • Khan MB, Hoda MN, Ishrat T, Ahmad S, Moshahid Khan M, Ahmad A, Yusuf S, Islam F (2012) Neuroprotective efficacy of Nardostachys jatamansi and crocetin in conjunction with selenium in cognitive impairment. Neurol Sci 33:1011–1020

    Article  PubMed  Google Scholar 

  • Kowaltowski AJ, Verces AE, Rhee SG, Netto LES (2000) Catalases and thioredoxin peroxidase protect Saccharomyces cerevisiae against Ca2+-induced mitochondrial membrane permeabilization and cell death. FEBS Lett 473:177–182

    Article  CAS  PubMed  Google Scholar 

  • Kupershmidt L, Weinreb O, Amit T, Mandel S, Bar-Am O, Youdim MBH (2011) Novel molecular targets of the neuroprotective/neurorescue multimodal iron chelating drug M30 in the mouse brain. Neuroscience 189:345–358

    Article  CAS  PubMed  Google Scholar 

  • Kupershmidt L, Amit T, Bar-Am O, Youdim MBH, Weinreb O (2012) The novel multi-target iron chelating-radical scavenging compound M30 possesses beneficial effects on major hallmarks of Alzheimer’s disease. Antioxid Redox Signal 17:860–877

    Article  CAS  PubMed  Google Scholar 

  • Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MBH (2006) Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 50:229–234

    Article  CAS  PubMed  Google Scholar 

  • Mariani E, Polidori MC, Cherubini A, MeFCoci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827:65–75

    Article  CAS  PubMed  Google Scholar 

  • Mechlovich D, Amit T, Mandel SA, Bar-Am O, Bloch K, Vardi P, Youdim MBH (2010) The novel multifunctional, iron-chelating drugs M30 and HLA20 protect pancreatic beta-cell lines from oxidative stress damage. J Pharmacol Exp Ther 333:874–882

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Tiwari V, Kuhad A, Chopra K (2011) Modulation of nitrergic pathway by sesamol prevents cognitive deficits and associated biochemical alterations in intracerebroventricular streptozotocin administered rats. Eur J Pharmacol 659:177–186

    Article  CAS  PubMed  Google Scholar 

  • Pathan A, Viswanad S, Sinkusare S, Ramarao P (2006) Chronic administration of pioglitazone attenuates icv streptozotocin induced-memory impairment in rats. Life Sci 79:2209–2216

    Article  CAS  PubMed  Google Scholar 

  • Pollak Y, Mechlovich D, Amit T, Bar-Am O, Manov I, Mandel SA, Weinreb O, Meyron-Holtz EG, Iancu TC, Youdim MBH (2013) Effects of novel neuroprotective and neurorestorative multifunctional drugs on iron chelation and glucose metabolism. J Neural Transm 120:37–48

    Article  CAS  PubMed  Google Scholar 

  • Prakash AK, Kumar A (2009) Effect of chronic treatment of carvedilol on oxidative stress in an intracerebroventricular streptozotocin induced model of dementia in rats. J Pharm Pharmacol 61:1665–1672

    Article  PubMed  Google Scholar 

  • Prickaerts J, Fahring T, Blokland A (1999) Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis. Behav Brain Res 102:73–88

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Sofic E, Moll G, Freyberger A, Wichart I, Gsell W, Jellinger K, Hebenstreit G, Youdim MBH (1990) Senile dementia of Alzheimer’s type and Parkinson’s disease: neurochemical overlaps and specific differences. In: Dostert P et al (eds) Early Markers in Parkinson’s and Alzheimer’s Diseases, vol 1. Springer-Verlag, Vienna, pp 221–232

    Chapter  Google Scholar 

  • Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233

    Article  CAS  PubMed  Google Scholar 

  • Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Salkovic-Petrisic M, Osmanovic-Barilar J, Brückner MK, Hoyer S, Arendt T, Riederer P (2011) Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transm 118:765–772

    Article  CAS  PubMed  Google Scholar 

  • Salkovic-Petrisic M, Knezovic A, Hoyer S, Riederer P (2013) What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm 120:233–252

    Article  CAS  PubMed  Google Scholar 

  • Sapcanin A, Tahirovic I, Kalcher K, Sofic E (2005) Antioxidant capacity declined during growth but not in aging in mouse brain [abstract]. Parkinsonism Relat Disord 11(Suppl 2):159

    Google Scholar 

  • Sapcanin A, Sofic E, Tahirovic I, Salkovic-Petrisic M, Hoyer S, Riederer P (2008) Antioxidant capacity in the rat brain after ICV treatment with streptozotocin and alloxan—a preliminary study. Neurotox Res 13:97–104

    Article  CAS  PubMed  Google Scholar 

  • Selvatici R, Marani L, Marino S, Siniscalchi A (2013) In vitro mitochondrial failure and oxidative stress mimic biochemical features of Alzheimer disease. Neurochem Int 63:112–120

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Gupta YK (2001a) Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sci 68:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Gupta YK (2001b) Effect of chronic treatment of melatonin learning, memory and oxidative deficiencies induced by intracerebroventricular streptozotocin in rats. Pharmacol Biochem Behav 70:325–331

    Article  CAS  PubMed  Google Scholar 

  • Sofic E, Moll G, Riederer P, Jellinger K, Gabriel E (1988) Monoaminerge Läsionen bei seniler Demenz vom Alzheimer Typ (SDAT): vorläufige Befunde. In: Beckmann H, Laux G (eds) Biologische Psychiatrie. Synopsis 1986/1987. Springer, Berlin, pp 151–157

    Chapter  Google Scholar 

  • Sofic E, Götz M, Frölich L, Burger R, Heckers S, Riederer P, Jellinger K, Beckmann H (1990) Reflection of changes in membrane constituents in various regions of Alzheimer brains to differential scanning thermograms. J Neural Transm Suppl 32:259–267

    CAS  PubMed  Google Scholar 

  • Sofic E, Froelich L, Riederer P, Jellinger K, Heckers S, Beckmann H, Deinzer E, Pantucek F, Hebenstreit G, Ransmayr G (1991) Biochemical membrane constituents and activity of alkaline and acid phosphatase and cathepsin in cortical and subcortical brain areas in Dementia of Alzheimer Type. Dementia 2:39–44

    Google Scholar 

  • Sofic E, Sapcanin A, Tahirovic I, Gavrankapetanovic I, Jellinger K, Reynolds GP, Riederer P (2006) Antioxidant capacity in the post-mortem brain tissues of Parkinson’s and Alzheimer’s diseases. J Neural Transm Suppl 71:39–43

    Article  CAS  PubMed  Google Scholar 

  • Swomley AM, Förster S, Keeney JT, Triplett J, Zhang Z, Sultana R, Butterfield DA (2014) Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim Biophys Acta (BBA) 1842:1248–1257

    Article  CAS  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546

    CAS  PubMed  Google Scholar 

  • Tada-Oikawa S, Oikawa S, Kawanishi M, Yamada M, Kawanishi S (1999) Generation of hydrogen peroxide precedes loss of mitochondrial membrane potential during DNA alkylation-induced apoptosis. FEBS Lett 442:65–69

    Article  CAS  PubMed  Google Scholar 

  • Tahirovic I, Sofic E, Sapcanin A, Gavrankapetanovic I, Bach-Rojecky L, Salkovic-Petrisic M, Lackovic Z, Hoyer S, Riederer P (2007a) Brain antioxidant capacity in rat models of betacytotoxic-induced experimental sporadic Alzheimer’s disease and diabetes mellitus. In: M. Gerlach et al. (eds.) Neuropsychiatric Disorders: An Integrative Approach. J Neural Transm Suppl 72:235–240

  • Tahirovic I, Sofic E, Sapcanin A, Gavrankapetanovic I, Bach-Rojecky L, Salkovic-Petrisic M, Lackovic Z, Hoyer S, Riederer P (2007b) Reduced brain antioxidant capacity in rat models of betacytotoxic-induced experimental sporadic Alzheimer’s disease and diabetes mellitus. Neurochem Res 32:1709–1717

    Article  CAS  PubMed  Google Scholar 

  • Tan JL, Li QX, Ciccotosto GD, Crouch PJ, Culvenor JG, White AR, Evin G (2013) Mild oxidative stress induces redistribution of BACE1 in non-apoptotic conditions and promotes the amyloidogenic processing of Alzheimer’s disease amyloid precursor protein. PLoS One 8:e61246. doi:10.1371/journal.pone.0061246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiwari V, Kuhad A, Bishnoi M, Chopra K (2009) Chronic treatment with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular streptozotocin-induced cognitive impairment and oxidative- nitrosative stress in rats. Pharmacol Biochem Behav 93:183–189

    Article  CAS  PubMed  Google Scholar 

  • Todorich BM, Connor JR (2004) Redox metals in Alzheimer’s disease. Ann N Y Acad Sci 1012:171–178

    Article  CAS  PubMed  Google Scholar 

  • Tome ME, Baker AF, Powis G, Payne CM, Briehl MM (2001) Catalase-overexpressing thymocytes are resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth. Cancer Res 61:2766–2773

    CAS  PubMed  Google Scholar 

  • Veerendra Kumar MH, Gupta YK (2003) Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin Exp Pharmacol Physiol 30:336–342

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Bar-Am O, Amit T, Youdim MBH (2004) Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J 18:1471–1473

    CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Sagi Y, Mandel S, Youdim MBH (2006) Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety. J Neural Transm Suppl 70:457–465

    Article  CAS  PubMed  Google Scholar 

  • Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Youdim MBH, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26:27–35

    Article  CAS  PubMed  Google Scholar 

  • Youdim MBH, Ben-Shachar D, Yehuda S (1989) Putative biological mechanisms of the effect of iron deficiency on brain biochemistry and behavior. Am J Clin Nutr Suppl 50:607–615

    CAS  Google Scholar 

  • Zámocký M, Koller F (1999) Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 72:19–66

    Article  PubMed  Google Scholar 

  • Zheng H, Weiner LM, Bar-Am O, Epsztejn S, Cabantchik ZI, Warshawsky A, Youdim MBH, Fridkin M (2005a) Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg Med Chem 13:773–783

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Gal S, Weiner LM (2005b) Novel multifunctional neuroprotective iron chelator–monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 95:68–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the German Academic Exchange Service (DAAD), Stability Pact Project for South-Eastern Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sofic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofic, E., Salkovic-Petrisic, M., Tahirovic, I. et al. Brain catalase in the streptozotocin-rat model of sporadic Alzheimer’s disease treated with the iron chelator–monoamine oxidase inhibitor, M30. J Neural Transm 122, 559–564 (2015). https://doi.org/10.1007/s00702-014-1307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1307-y

Keywords

Navigation