Skip to main content
Log in

A population-based association study of glutamate decarboxylase 1 as a candidate gene for autism

  • Biological Child and Adolescent Psychiatry - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Linkage studies, genome-wide scans and screening of possible candidate genes suggest that chromosome 2q31 may harbour one or more susceptibility genes for autism. The glutamate decarboxylase gene 1 (GAD1) located within chromosome 2q31 encodes the enzyme, GAD67, catalyzing the production of gamma-aminobutyric acid (GABA) from glutamate. Numerous independent findings have suggested the GABAergic system to be involved in autism. The present study investigates a Danish population-based, case-control sample of 444 subjects with childhood autism and 444 controls. Nine single nucleotide polymorphisms (SNPs) comprising the GAD1 gene and the microsatellite marker D2S2381 were examined for association with autism. We found no association between childhood autism and any single marker or 2–5 marker haplotypes. However, a rare nine-marker haplotype was associated with childhood autism. We cannot exclude neither GAD1 as a susceptibility gene nor the possibility of another susceptibility gene for autism to be located on chromosome 2q31.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Lauritsen MB et al (2008) Quality of the diagnosis of childhood autism in the Danish Psychiatric Central Register (in preparation)

  • AC IMS (2001) A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 69(3):570–581

    Article  Google Scholar 

  • Addington AM et al (2005) GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry 10(6):581–588

    Article  PubMed  CAS  Google Scholar 

  • Ambrosius WT, Lange EM, Langefeld CD (2004) Power for genetic association studies with random allele frequencies and genotype distributions. Am J Hum Genet 74(4):683–693

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington

    Google Scholar 

  • Bailey A et al (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25(1):63–77

    Article  PubMed  CAS  Google Scholar 

  • Bergen AW et al (2005) Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance. BMC Biotechnol 5:24

    Article  PubMed  CAS  Google Scholar 

  • Blasi F et al (2005) SLC25A12 and CMYA3 gene variants are not associated with autism in the IMGSAC multiplex family sample. Eur J Hum Genet 14(1):123–126

    Google Scholar 

  • Blatt GJ (2005) GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int Rev Neurobiol 71:167–178

    Article  PubMed  CAS  Google Scholar 

  • Blatt GJ et al (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 31(6):537–543

    Article  PubMed  CAS  Google Scholar 

  • Bolton P et al (1994) A case-control family history study of autism. J Child Psychol Psychiatry 35(5):877–900

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum JD et al (2001) Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. Am J Hum Genet 68(6):1514–1520

    Article  PubMed  CAS  Google Scholar 

  • Collins AL et al (2006) Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 7(3):167–174

    Article  PubMed  CAS  Google Scholar 

  • Dean FB et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99(8):5261–5266

    Article  PubMed  CAS  Google Scholar 

  • Dhossche D et al (2002) Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Med Sci Monit 8(8):R1–R6

    Google Scholar 

  • Fatemi SH et al (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52(8):805–810

    Article  PubMed  CAS  Google Scholar 

  • Freitag CM (2007) The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 12(1):2–22

    Article  PubMed  CAS  Google Scholar 

  • Hannelius U et al (2005) Phenylketonuria screening registry as a resource for population genetic studies. J Med Genet 42(10):e60

    Article  PubMed  CAS  Google Scholar 

  • Hollegaard MV et al (2007) Whole genome amplification and genetic analysis after extraction of proteins from dried blood spots. Clin Chem 53(6):1161–1162

    Article  PubMed  CAS  Google Scholar 

  • Lauritsen MB et al (2006) A genome-wide search for alleles and haplotypes associated with autism and related pervasive developmental disorders on the Faroe Islands. Mol Psychiatry 11(1):37–46

    Article  PubMed  CAS  Google Scholar 

  • Lundorf MD et al (2005) Mutational screening and association study of glutamate decarboxylase 1 as a candidate susceptibility gene for bipolar affective disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 135B(1):94–101

    Article  PubMed  CAS  Google Scholar 

  • Munk-Jorgensen P, Mortensen PB (1997) The Danish Psychiatric Central Register. Dan Med Bull 44(1):82–84

    PubMed  CAS  Google Scholar 

  • Norgaard-Pedersen B, Simonsen H (1999) Biological specimen banks in neonatal screening. Acta Paediatr Suppl 88(432):106–109

    PubMed  CAS  Google Scholar 

  • Philippe A et al (1999) Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Hum Mol Genet 8(5):805–812

    Article  PubMed  CAS  Google Scholar 

  • Rabionet R et al (2004) Analysis of the autism chromosome 2 linkage region: GAD1 and other candidate genes. Neurosci Lett 372(3):209–214

    Article  PubMed  CAS  Google Scholar 

  • Rabionet R et al (2006) Lack of association between autism and SLC25A12. Am J Psychiatry 163(5):929–931

    Article  PubMed  Google Scholar 

  • Ramoz N et al (2004) Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am J Psychiatry 161(4):662–669

    Article  PubMed  Google Scholar 

  • Risch N et al (1999) A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet 65(2):493–507

    Article  PubMed  CAS  Google Scholar 

  • Romano V et al (2005) Suggestive evidence for association of D2S2188 marker (2q31.1) with autism in 143 Sicilian (Italian) TRIO families. Psychiatr Genet 15(2):149–150

    Article  PubMed  Google Scholar 

  • Schaid DJ et al (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70(2):425–434

    Article  PubMed  Google Scholar 

  • Segurado R et al (2005) Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. Am J Psychiatry 162(11):2182–2184

    Article  PubMed  Google Scholar 

  • Shao Y et al (2002a) Phenotypic homogeneity provides increased support for linkage on chromosome 2 in autistic disorder. Am J Hum Genet 70(4):1058–1061

    Article  PubMed  CAS  Google Scholar 

  • Shao Y et al (2002b) Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 114(1):99–105

    Article  PubMed  Google Scholar 

  • Simonsen H, Brandt NJ, Norgaard-Pedersen B (1998) Neonatal screening in Denmark. Status and future perspectives. Ugeskr Laeger 160(40):5777–5782

    PubMed  CAS  Google Scholar 

  • Sorensen KM et al (2007) Whole genome amplification on DNA from filter paper blood spot samples: an evaluation of selected systems. Genet Test 11(1):65–71

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2004) R: a language and environment for statistical computing, Vienna, Austria R Foundation for statistical computing

  • Yip J, Soghomonian JJ, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113(5):559–568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Leslie Foldager and Thomas Damm Als for statistical assistance and valuable suggestions and comments. Financial support was given by “Fonden til Psykiatriens Fremme”, “Fru C. Hermansens Mindelegat”, “Rosalie Petersens Fond”, “Overlæge Johan Boserup og Lise Boserups Legat”, “Dagmar Marshalls Fond”, and “Pulje til styrkelse af Psykiatrisk Forskning i Århus Amt”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henriette Nørmølle Buttenschøn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttenschøn, H.N., Lauritsen, M.B., Daoud, A.E. et al. A population-based association study of glutamate decarboxylase 1 as a candidate gene for autism. J Neural Transm 116, 381–388 (2009). https://doi.org/10.1007/s00702-008-0142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0142-4

Keywords

Navigation