Skip to main content
Log in

Role of melatonin receptors in the effects of melatonin on BDNF and neuroprotection in mouse cerebellar neurons

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Although melatonin affects developing neurons and is neuroprotective, a role of melatonin receptors termed MT1 and MT2 in these actions is unclear. We investigated the effects of melatonin on the levels of the brain derived neurotrophic factor (BDNF) in the developing cerebellum and cerebellar granule cells (CGC) of wild-type (WT), MT1- and MT2-knockout mice. A model of low-potassium CGC toxicity was used to evaluate neuroprotection. A 14-day-old pups and CGC cultures were treated with melatonin; 0.01 mg/kg intraperitoneally and 1 nM in vitro, respectively. Treatment of WT pups and CGC with melatonin did not alter BDNF levels. The absence of MT2 but not MT1 receptors enabled melatonin to increase cerebellar and CGC BDNF content. Nanomolar melatonin was neuroprotective in MT2-knockout but not WT CGC. We propose that CGC from MT2-knockout mice could serve as a model for studying the influence of melatonin on human CGC, which express MT1 but not MT2 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Ghoul WM, Herman MD, Dubocovich ML (1998) Melatonin receptor subtype expression in human cerebellum. Neuroreport 9:4063–4068

    Article  PubMed  CAS  Google Scholar 

  • Atabay C, Cagnoli CM, Kharlamov E, Ikonomovic MD, Manev H (1996) Removal of serum from primary cultures of cerebellar granule neurons induces oxidative stress and DNA fragmentation: protection with antioxidants and glutamate receptor antagonists. J Neurosci Res 43:465–475

    Article  PubMed  CAS  Google Scholar 

  • Bondi CD, McKeon RM, Bennett JM, Ignatius PF, Brydon L, Jockers R, Melan MA, Witt-Enderby PA (2008) MT1 melatonin receptor internalization underlies melatonin-induced morphologic changes in Chinese hamster ovary cells and these processes are dependent on Gi proteins, MEK 1/2 and microtubule modulation. J Pineal Res 44:288–298

    Article  PubMed  CAS  Google Scholar 

  • Bonfanti L, Ponti G (2008) Adult mammalian neurogenesis and the New Zealand white rabbit. Vet J 175:310–331

    Article  PubMed  Google Scholar 

  • Brunner P, Sozer-Topcular N, Jockers R, Ravid R, Angeloni D, Fraschini F, Eckert A, Muller-Spahn F, Savaskan E (2006) Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur J Histochem 50:311–316

    PubMed  CAS  Google Scholar 

  • Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, Masana MI (2003) Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci 8:d1093–d1108

    Article  PubMed  CAS  Google Scholar 

  • Giusti P, Gusella M, Lipartiti M, Milani D, Zhu W, Vicini S, Manev H (1995) Melatonin protects primary cultures from kainite but not from N-methyl-d-aspartate excitotoxicity. Exp Neurol 131:39–46

    Article  PubMed  CAS  Google Scholar 

  • Imbesi M, Kurtuncu M, Uz T, Manev H (2005) Neuronal melatonin receptors MT1 and MT2 mediate melatonin’s regulatory effects on intracellular signaling systems. Program No 491.15 2005 Abstract Viewer/Itinerary Planner Society for Neuroscience 2005 Online

  • Jimenez-Jorge S, Guerrero JM, Jimenez-Caliani J, Naranjo MC, Lardone PJ, Carrillo-Vico A, Osuna C, Molinero P (2007) Evidence for melatonin synthesis in the rat brain during development. J Pineal Res 42:240–246

    Article  PubMed  CAS  Google Scholar 

  • Katoh-Semba R, Wakako R, Komori T, Shigemi H, Miyazaki N, Ito H, Kumagai T, Tsuzuki M, Shigemi K, Yoshida F, Nakayama A (2007) Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls. Int J Dev Neurosci 25:367–372

    Article  PubMed  CAS  Google Scholar 

  • Kong X, Li X, Cai Z, Yang N, Liu Y, Shu J, Pan L, Zuo P (2007) Melatonin regulates the viability and differentiation of rat midbrain neural stem cells. Cell Mol Neurobiol (Epub ahead of print)

  • Levoye A, Jockers R, Ayoub MA, Delagrange P, Savaskan E, Guillaume JL (2006) Are G protein-coupled receptor heterodimers of physiological relevance? - Focus on melatonin receptors. Chronobiol Int 23:419–426

    Article  PubMed  CAS  Google Scholar 

  • Masana MI, Dubocovich ML (2001) Melatonin receptor signaling: finding the path through the dark. Sci STKE 107:PE39

    Google Scholar 

  • Melke J, Goubran Botros H, Chaste P, Betancur C, Nygren G, Anckarsäter H, Rastam M, Ståhlberg O, Gillberg IC, Delorme R, Chabane N, Mouren-Simeoni MC, Fauchereau F, Durand CM, Chevalier F, Drouot X, Collet C, Launay JM, Leboyer M, Gillberg C, Bourgeron T (2008) Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry 13:90–98

    Article  PubMed  CAS  Google Scholar 

  • Meng H, Larson SK, Gao R, Qiao X (2007) BDNF transgene improves ataxic and motor behaviors in stargazer mice. Brain Res 1160:47–57

    Article  PubMed  CAS  Google Scholar 

  • Savaskan E, Olivieri G, Meier F, Brydon L, Jockers R, Ravid R, Wirz-Justice A, Muller-Spahn F (2002) Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer’s disease patients. J Pineal Res 32:59–62

    Article  PubMed  Google Scholar 

  • Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F, Eckert A, Muller-Spahn F, Jockers R (2005) Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J Pineal Res 38:10–16

    Article  PubMed  CAS  Google Scholar 

  • Schmitz C, Rezaie P (2008) The neuropathology of autism: where do we stand? Neuropathol Appl Neurobiol 34:4–11

    PubMed  CAS  Google Scholar 

  • Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5:30–34

    Article  PubMed  CAS  Google Scholar 

  • Thomas L, Purvis CC, Drew JE, Abramovich DR, Williams LM (2002) Melatonin receptors in human fetal brain: 2-[(125) I]iodomelatonin binding and MT1 gene expression. J Pineal Res 33:218–224

    Article  PubMed  Google Scholar 

  • Tunç AT, Aslan H, Turgut M, Ekici F, Odaci E, Kaplan S (2007) Inhibitory effect of pinealectomy on the development of cerebellar granule cells in the chick: a stereological study. Brain Res 1138:214–220

    Article  PubMed  CAS  Google Scholar 

  • Uz T, Giusti P, Franceschini D, Kharlamov A, Manev H (1996) Protective effect of melatonin against hippocampal DNA damage induced by administration of kainate to rats. Neuroscience 73:631–636

    Article  PubMed  CAS  Google Scholar 

  • Uz T, Manev R, Manev H (2001) 5-Lipoxygenase is required for proliferation of immature cerebellar granule neurons in vitro. Eur J Pharmacol 418:15–22

    Article  PubMed  CAS  Google Scholar 

  • Uz T, Arslan AD, Kurtuncu M, Imbesi M, Akhisaroglu M, Dwivedi Y, Pandey GN, Manev H (2005) The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res Mol Brain Res 136:45–53

    Article  PubMed  CAS  Google Scholar 

  • Witt-Enderby PA, Radio NM, Doctor JS, Davis VL (2006) Therapeutic treatments potentially mediated by melatonin receptors: potential clinical uses in the prevention of osteoporosis, cancer and as an adjuvant therapy. J Pineal Res 41:297–305

    Article  PubMed  CAS  Google Scholar 

  • Wu YH, Zhou JN, Balesar R, Unmehopa U, Bao A, Jockers R, Van Heerikhuize J, Swaab DF (2006) Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotrophin-releasing hormone. J Comp Neurol 499:897–910

    Article  PubMed  CAS  Google Scholar 

  • Wu YH, Zhou JN, Van Heerikhuize J, Jockers R, Swaab DF (2007) Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging 28:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi S, Matsumoto T, Yokomaku D, Hatanaka H, Shimoke K, Yamada M, Ikeuchi T (2003) Comparison of inhibitory effects of brain-derived neurotrophic factor and insulin-like growth factor on low potassium-induced apoptosis and activation of p38 MAPK and c-Jun in cultured cerebellar granule neurons. Brain Res Mol Brain Res 119:184–191

    Article  PubMed  CAS  Google Scholar 

  • Yu O, Chuang DM (1997) Neurotrophin protection against toxicity induced by low potassium and nitroprusside in cultured cerebellar granule neurons. J Neurochem 68:68–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the Psychiatric Institute, UIC and by the NIMH grant R01MH61572 (H. M.). We thank Drs. Reppert and Weaver of the University of Massachusetts Medical School for providing the MT1- and -MT2-deficient founder mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Manev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbesi, M., Uz, T. & Manev, H. Role of melatonin receptors in the effects of melatonin on BDNF and neuroprotection in mouse cerebellar neurons. J Neural Transm 115, 1495–1499 (2008). https://doi.org/10.1007/s00702-008-0066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0066-z

Keywords

Navigation