Skip to main content

Advertisement

Log in

Evidence for direct impairment of neuronal function by subarachnoid metabolites following SAH

  • Review Article - Vascular
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Dysfunction of neuronal signal processing and transmission occurs after subarachnoid hemorrhage (SAH) and contributes to the high morbidity and mortality of this pathology. The underlying mechanisms include early brain injury due to elevation of the intracranial pressure, disruption of the blood–brain barrier, brain edema, reduction of cerebral blood flow, and neuronal cell death. Direct influence of subarachnoid blood metabolites on neuronal signaling should be considered. After SAH, some metabolites were shown to directly induce disruption of neuronal integrity and neuronal signaling, whereas the effects of other metabolites on neurotoxicity and neuronal signaling have not yet been investigated. Therefore, this mini-review will discuss recent evidence for a direct influence of subarachnoid blood and its metabolites on neuronal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Khindi T, Macdonald RL, Schweizer TA (2010) Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke 41(8):e519–e536

    Article  PubMed  Google Scholar 

  2. Auerbach JM, Segal M (1997) Peroxide modulation of slow-onset potentiation in rat hippocampus. J Neurosci 17(22):8695–8701

    PubMed  CAS  Google Scholar 

  3. Auriat AM, Silasi G, Wei Z, Paquette R, Paterson P, Nichol H, Colbourne F (2012) Ferric iron chelation lowers brain iron levels after intracerebral hemorrhage in rats but does not improve outcome. Exp Neurol 234(1):136–143

    Article  PubMed  CAS  Google Scholar 

  4. Ayer RE, Zhang JH (2008) The clinical significance of acute brain injury in subarachnoid hemorrhage and opportunity for intervention. Acta Neurochir Suppl 105:179–184

    Article  PubMed  CAS  Google Scholar 

  5. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12(2):222–228

    Article  PubMed  CAS  Google Scholar 

  6. Bavaresco CS, Chiarani F, Matte C, Wajner M, Netto CA, Souza Wyse AT (2005) Effect of hypoxanthine on Na+, K+-ATPase activity and some parameters of oxidative stress in rat striatum. Brain Res 1041(2):198–204

    Article  PubMed  CAS  Google Scholar 

  7. Bendel O, Prunell G, Stenqvist A, Mathiesen T, Holmin S, Svendgaard NA, Euler G (2005) Experimental subarachnoid hemorrhage induces changes in the levels of hippocampal NMDA receptor subunit mRNA. Brain Res Mol Brain Res 137(1–2):119–125

    Article  PubMed  CAS  Google Scholar 

  8. Berry E, Jones RA, West CG, Brown JD (1997) Outcome of subarachnoid haemorrhage. An analysis of surgical variables, cognitive and emotional sequelae related to SPECT scanning. Br J Neurosurg 11(5):378–387

    Article  PubMed  CAS  Google Scholar 

  9. Bilgihan A, Turkozkan N, Aricioglu A, Aykol S, Cevik C, Goksel M (1994) The effect of deferoxamine on brain lipid peroxide levels and Na-K ATPase activity following experimental subarachnoid hemorrhage. Gen Pharmacol 25(3):495–497

    Article  PubMed  CAS  Google Scholar 

  10. Bliss TV, Richter-Levin G (1993) Spatial learning and the saturation of long-term potentiation. Hippocampus 3(2):123–125

    Article  PubMed  CAS  Google Scholar 

  11. Brites D (2011) Bilirubin injury to neurons and glial cells: new players, novel targets, and newer insights. Semin Perinatol 35(3):114–120

    Article  PubMed  Google Scholar 

  12. Chang FY, Lee CC, Huang CC, Hsu KS (2009) Unconjugated bilirubin exposure impairs hippocampal long-term synaptic plasticity. PLoS One 4(6):e5876

    Article  PubMed  Google Scholar 

  13. Chen-Roetling J, Liu W, Regan RF (2011) Iron accumulation and neurotoxicity in cortical cultures treated with holotransferrin. Free Radic Biol Med 51(11):1966–1974

    Article  PubMed  CAS  Google Scholar 

  14. Clark JF, Harm A, Saffire A, Biehle SJ, Lu A, Pyne-Geithman GJ (2011) Bilirubin oxidation products seen post subarachnoid hemorrhage have greater effects on aged rat brain compared to young. Acta Neurochir Suppl 110(Pt 1):157–162

    Article  PubMed  Google Scholar 

  15. Dang TN, Robinson SR, Dringen R, Bishop GM (2011) Uptake, metabolism and toxicity of hemin in cultured neurons. Neurochem Int 58:804–811

    Google Scholar 

  16. Dreier JP, Ebert N, Priller J, Megow D, Lindauer U, Klee R, Reuter U, Imai Y, Einhaupl KM, Victorov I, Dirnagl U (2000) Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg 93(4):658–666

    Article  PubMed  CAS  Google Scholar 

  17. Dreier JP, Windmuller O, Petzold G, Lindauer U, Einhaupl KM, Dirnagl U (2002) Ischemia triggered by red blood cell products in the subarachnoid space is inhibited by nimodipine administration or moderate volume expansion/hemodilution in rats. Neurosurgery 51(6):1457–1465

    PubMed  Google Scholar 

  18. Egge A, Waterloo K, Sjoholm H, Ingebrigtsen T, Forsdahl S, Jacobsen EA, Romner B (2005) Outcome 1 year after aneurysmal subarachnoid hemorrhage: relation between cognitive performance and neuroimaging. Acta Neurol Scand 112(2):76–80

    Article  PubMed  CAS  Google Scholar 

  19. Falcao AS, Silva RF, Pancadas S, Fernandes A, Brito MA, Brites D (2007) Apoptosis and impairment of neurite network by short exposure of immature rat cortical neurons to unconjugated bilirubin increase with cell differentiation and are additionally enhanced by an inflammatory stimulus. J Neurosci Res 85(6):1229–1239

    Article  PubMed  CAS  Google Scholar 

  20. Gasparova Z, Jariabka P, Stolc S (2008) Effect of transient ischemia on long-term potentiation of synaptic transmission in rat hippocampal slices. Neuro Endocrinol Lett 29(5):702–705

    PubMed  Google Scholar 

  21. Giniatullin AR, Darios F, Shakirzyanova A, Davletov B, Giniatullin R (2006) SNAP25 is a pre-synaptic target for the depressant action of reactive oxygen species on transmitter release. J Neurochem 98(6):1789–1797

    Article  PubMed  CAS  Google Scholar 

  22. Giniatullin AR, Giniatullin RA (2003) Dual action of hydrogen peroxide on synaptic transmission at the frog neuromuscular junction. J Physiol 552(Pt 1):283–293

    Article  PubMed  CAS  Google Scholar 

  23. Giniatullin AR, Grishin SN, Sharifullina ER, Petrov AM, Zefirov AL, Giniatullin RA (2005) Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction. J Physiol 565(Pt 1):229–242

    Article  PubMed  CAS  Google Scholar 

  24. Goldstein L, Teng ZP, Zeserson E, Patel M, Regan RF (2003) Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. J Neurosci Res 73(1):113–121

    Article  PubMed  CAS  Google Scholar 

  25. Grojean S, Koziel V, Vert P, Daval JL (2000) Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp Neurol 166(2):334–341

    Article  PubMed  CAS  Google Scholar 

  26. Gu Y, Hua Y, He Y, Wang L, Hu H, Keep RF, Xi G (2011) Iron accumulation and DNA damage in a pig model of intracerebral hemorrhage. Acta Neurochir Suppl 111:123–128

    Article  PubMed  Google Scholar 

  27. Hadjivassiliou M, Tooth CL, Romanowski CA, Byrne J, Battersby RD, Oxbury S, Crewswell CS, Burkitt E, Stokes NA, Paul C, Mayes AR, Sagar HJ (2001) Aneurysmal SAH: cognitive outcome and structural damage after clipping or coiling. Neurology 56(12):1672–1677

    Article  PubMed  CAS  Google Scholar 

  28. Hahm ET, Seo JW, Hur J, Cho YW (2010) Modulation of presynaptic GABA release by oxidative stress in mechanically-isolated rat cerebral cortical neurons. Korean J Physiol Pharmacol 14(3):127–132

    Article  PubMed  CAS  Google Scholar 

  29. Hasegawa Y, Suzuki H, Sozen T, Altay O, Zhang JH (2011) Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl 110(Pt 1):43–48

    Article  PubMed  Google Scholar 

  30. Hirata K, Kawano T, Mori K (1993) Changes in monoaminergic neuronal function in the lower brain stem following subarachnoid hemorrhage induced in rats. Cell Mol Neurobiol 13(6):639–648

    Article  PubMed  CAS  Google Scholar 

  31. Joseph JA, Erat S, Denisova N, Villalobos-Molina R (1998) Receptor- and age-selective effects of dopamine oxidation on receptor-G protein interactions in the striatum. Free Radic Biol Med 24(5):827–834

    Article  PubMed  CAS  Google Scholar 

  32. Kamsler A, Segal M (2004) Hydrogen peroxide as a diffusible signal molecule in synaptic plasticity. Mol Neurobiol 29(2):167–178

    Article  PubMed  CAS  Google Scholar 

  33. Katsuki H, Nakanishi C, Saito H, Matsuki N (1997) Biphasic effect of hydrogen peroxide on field potentials in rat hippocampal slices. Eur J Pharmacol 337(2–3):213–218

    Article  PubMed  CAS  Google Scholar 

  34. Klann E, Roberson ED, Knapp LT, Sweatt JD (1998) A role for superoxide in protein kinase C activation and induction of long-term potentiation. J Biol Chem 273(8):4516–4522

    Article  PubMed  CAS  Google Scholar 

  35. Kranc KR, Pyne GJ, Tao L, Claridge TD, Harris DA, Cadoux-Hudson TA, Turnbull JJ, Schofield CJ, Clark JF (2000) Oxidative degradation of bilirubin produces vasoactive compounds. Eur J Biochem 267(24):7094–7101

    Article  PubMed  CAS  Google Scholar 

  36. Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, Du YE, Stern Y, Connolly ES, Mayer SA (2002) Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke 33(1):200–208

    Article  PubMed  Google Scholar 

  37. Kvaltinova Z, Lukovic L, Stolc S (1993) Effect of incomplete ischemia and reperfusion of the rat brain on the density and affinity of alpha-adrenergic binding sites in the cerebral cortex. Prevention of changes by stobadine and vitamin E. Neuropharmacology 32(8):785–791

    Article  PubMed  CAS  Google Scholar 

  38. Laird MD, Wakade C, Alleyne CH Jr, Dhandapani KM (2008) Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. Free Radic Biol Med 45(8):1103–1114

    Article  PubMed  CAS  Google Scholar 

  39. Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G (2010) Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab 30(11):1793–1803

    Article  PubMed  CAS  Google Scholar 

  40. Lee JY, Keep RF, Hua Y, Ernestus RI, Xi G (2011) Deferoxamine reduces early brain injury following subarachnoid hemorrhage. Acta Neurochir Suppl 112:101–106

    Article  PubMed  Google Scholar 

  41. Levy YS, Streifler JY, Panet H, Melamed E, Offen D (2002) Hemin-induced apoptosis in PC12 and neuroblastoma cells: implications for local neuronal death associated with intracerebral hemorrhage. Neurotox Res 4(7–8):609–616

    Article  PubMed  CAS  Google Scholar 

  42. Li B, Luo C, Tang W, Chen Z, Li Q, Hu B, Lin J, Zhu G, Zhang JH, Feng H (2012) Role of HCN channels in neuronal hyperexcitability after subarachnoid hemorrhage in rats. J Neurosci 32(9):3164–3175

    Article  PubMed  CAS  Google Scholar 

  43. Li CY, Shi HB, Song NY, Yin SK (2011) Bilirubin enhances neuronal excitability by increasing glutamatergic transmission in the rat lateral superior olive. Toxicology 284(1–3):19–25

    Article  PubMed  CAS  Google Scholar 

  44. Li CY, Shi HB, Wang J, Ye HB, Song NY, Yin SK (2011) Bilirubin facilitates depolarizing GABA/glycinergic synaptic transmission in the ventral cochlear nucleus of rats. Eur J Pharmacol 660(2–3):310–317

    Article  PubMed  CAS  Google Scholar 

  45. Matz PG, Fujimura M, Lewen A, Morita-Fujimura Y, Chan PH (2001) Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke 32(2):506–515

    Article  PubMed  CAS  Google Scholar 

  46. McDonald JW, Shapiro SM, Silverstein FS, Johnston MV (1998) Role of glutamate receptor-mediated excitotoxicity in bilirubin-induced brain injury in the Gunn rat model. Exp Neurol 150(1):21–29

    Article  PubMed  CAS  Google Scholar 

  47. Paramo B, Hernandez-Fonseca K, Estrada-Sanchez AM, Jimenez N, Hernandez-Cruz A, Massieu L (2010) Pathways involved in the generation of reactive oxygen and nitrogen species during glucose deprivation and its role on the death of cultured hippocampal neurons. Neuroscience 167(4):1057–1069

    Article  PubMed  CAS  Google Scholar 

  48. Regan RF, Chen J, Benvenisti-Zarom L (2004) Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin. BMC Neurosci 5:34

    Article  PubMed  Google Scholar 

  49. Regan RF, Panter SS (1993) Neurotoxicity of hemoglobin in cortical cell culture. Neurosci Lett 153(2):219–222

    Article  PubMed  CAS  Google Scholar 

  50. Regan RF, Rogers B (2003) Delayed treatment of hemoglobin neurotoxicity. J Neurotrauma 20(1):111–120

    Article  PubMed  Google Scholar 

  51. Rocchitta G, Migheli R, Mura MP, Grella G, Esposito G, Marchetti B, Miele E, Desole MS, Miele M, Serra PA (2005) Signaling pathways in the nitric oxide and iron-induced dopamine release in the striatum of freely moving rats: role of extracellular Ca2+ and L-type Ca2+ channels. Brain Res 1047(1):18–29

    Article  PubMed  CAS  Google Scholar 

  52. Rodrigues CM, Sola S, Brites D (2002) Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology 35(5):1186–1195

    Article  PubMed  CAS  Google Scholar 

  53. Rodrigues CM, Sola S, Brito MA, Brites D, Moura JJ (2002) Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria. J Hepatol 36(3):335–341

    Article  PubMed  CAS  Google Scholar 

  54. Rogers B, Yakopson V, Teng ZP, Guo Y, Regan RF (2003) Heme oxygenase-2 knockout neurons are less vulnerable to hemoglobin toxicity. Free Radic Biol Med 35(8):872–881

    Article  PubMed  CAS  Google Scholar 

  55. Romner B, Sonesson B, Ljunggren B, Brandt L, Saveland H, Holtas S (1989) Late magnetic resonance imaging related to neurobehavioral functioning after aneurysmal subarachnoid hemorrhage. Neurosurgery 25(3):390–396

    Article  PubMed  CAS  Google Scholar 

  56. Sah R, Galeffi F, Ahrens R, Jordan G, Schwartz-Bloom RD (2002) Modulation of the GABA(A)-gated chloride channel by reactive oxygen species. J Neurochem 80(3):383–391

    Article  PubMed  CAS  Google Scholar 

  57. Saida A, Ito H, Shibuya T, Watanabe Y (1997) Time-course alterations of monoamine levels and cerebral blood flow in brain regions after subarachnoid hemorrhage in rats. Brain Res Bull 43(1):69–80

    Article  PubMed  CAS  Google Scholar 

  58. Saveland H, Nilsson OG, Boris-Moller F, Wieloch T, Brandt L (1996) Intracerebral microdialysis of glutamate and aspartate in two vascular territories after aneurysmal subarachnoid hemorrhage. Neurosurgery 38(1):12–19

    Article  PubMed  CAS  Google Scholar 

  59. Selim M (2009) Deferoxamine mesylate: a new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke 40(3 Suppl):S90–S91

    Article  PubMed  CAS  Google Scholar 

  60. Shi HB, Kakazu Y, Shibata S, Matsumoto N, Nakagawa T, Komune S (2006) Bilirubin potentiates inhibitory synaptic transmission in lateral superior olive neurons of the rat. Neurosci Res 55(2):161–170

    Article  PubMed  CAS  Google Scholar 

  61. Tariq A, Ai J, Chen G, Sabri M, Jeon H, Shang X, Macdonald RL (2010) Loss of long-term potentiation in the hippocampus after experimental subarachnoid hemorrhage in rats. Neuroscience 165(2):418–426

    Article  PubMed  CAS  Google Scholar 

  62. van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369(9558):306–318

    Article  PubMed  Google Scholar 

  63. Vaz AR, Silva SL, Barateiro A, Falcao AS, Fernandes A, Brito MA, Brites D (2011) Selective vulnerability of rat brain regions to unconjugated bilirubin. Mol Cell Neurosci 48(1):82–93

    Article  PubMed  CAS  Google Scholar 

  64. Wang X, Mori T, Sumii T, Lo EH (2002) Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress. Stroke 33(7):1882–1888

    Article  PubMed  CAS  Google Scholar 

  65. Yip S, Ip JK, Sastry BR (1996) Electrophysiological actions of hemoglobin on rat hippocampal CA1 pyramidal neurons. Brain Res 713(1–2):134–142

    Article  PubMed  CAS  Google Scholar 

  66. Yip S, Sastry BR (2000) Effects of hemoglobin and its breakdown products on synaptic transmission in rat hippocampal CA1 neurons. Brain Res 864(1):1–12

    Article  PubMed  CAS  Google Scholar 

  67. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  PubMed  CAS  Google Scholar 

  68. Zhang L, Liu W, Tanswell AK, Luo X (2003) The effects of bilirubin on evoked potentials and long-term potentiation in rat hippocampus in vivo. Pediatr Res 53(6):939–944

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel A. Kamp.

Additional information

Kamp and Dibué contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamp, M.A., Dibué, M., Etminan, N. et al. Evidence for direct impairment of neuronal function by subarachnoid metabolites following SAH. Acta Neurochir 155, 255–260 (2013). https://doi.org/10.1007/s00701-012-1559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-012-1559-y

Keywords

Navigation