Skip to main content
Log in

Pollen heteromorphism is pervasive in Thalictrum (Ranunculaceae)

  • Short Communication
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Among the angiosperms, features of pollen morphology such as grain size, aperture number and surface ornamentation display striking variation. It is less well appreciated that pollen morphology may vary within and among populations of the same species as well as within individual plants. In some species, individual plants produce multiple types of fertile pollen grains (called pollen heteromorphism). Aspects of pollen morphology, such as aperture number, are likely to affect fertilization success with different morphologies favored in different local competitive and ecological environments. This study surveys variation in pollen grain morphology among species throughout the genus Thalictrum. Pollen from individuals of 36 species was rehydrated from herbarium specimens, and light microscopy was used to quantify pollen grain aperture number and size. I find that pollen aperture-number heteromorphism is present within all Thalictrum species studied, and distributions of aperture-number morphs vary both within and among species. This study provides an example of significant pollen heteromorphism within a genus that also varies widely for pollination mode and sexual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aizen M, Raffaele E (1998) Flowering-shoot defoliation affects pollen grain size and postpollination pollen performance in Alstroemeria aurea. Ecology 79:2133–2142. doi:10.2307/176716

    Article  Google Scholar 

  • Baker HG, Baker I (1982) Starchy and starchless pollen in the Onagraceae. Ann Missouri Bot Gard 69:748–754. doi:10.2307/2398994

    Article  Google Scholar 

  • Bessedik M (1983) The genus Buxus nagyipollis in the western European tertiary evolution and paleogeographic implications. Pollen & Spores 25:461–486

    Google Scholar 

  • Borsch T, Barthlott W (1994) Classification and distribution of the genus Nelumbo adans (Nelumbonaceae). Beitr Biol Pflanzen 68:421–450

    Google Scholar 

  • Bronckers F (1963) Pollen variations in a series of artificial autopolyploids of Arabidopsis thaliana (L) Heynh English summ. Pollen & Spores 5:233–238

    Google Scholar 

  • Chaloner WG (1976) The evolution of adaptive features in fossil exines. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London

    Google Scholar 

  • Cooper RL, Osborn JM, Philbrick CT (2000) Comparative pollen morphology and ultrastructure of the Callitrichaceae. Amer J Bot 87:161–175. doi:10.2307/2656902

    Article  CAS  Google Scholar 

  • Cruzan MB (1990) Variation in pollen size, fertilization ability, and postfertilization siring ability in Erythronium grandiflorum. Evolution 44:843–856. doi:10.2307/2409550

    Article  Google Scholar 

  • Dafni A, Kevan PG, Husband BC (2005) Practical pollination biology. Enviroquest Ltd., Cambridge

    Google Scholar 

  • Dajoz I (1999) The distribution of pollen heteromorphism in Viola: ecological and morphological correlates. Evol Ecol Res 1:97–109

    Google Scholar 

  • Dajoz I, Till-Bottraud I, Gouyon PH (1991) Evolution of pollen morphology. Sci J (London) 253:66–68. doi:10.1126/science.253.5015.66

    CAS  Google Scholar 

  • Dajoz I, Till-Bottraud I, Gouyon PH (1993) Pollen aperture polymorphism and gametophyte performance in Viola diversifolia. Evolution 47:1080–1093. doi:10.2307/2409976

    Article  Google Scholar 

  • Davis SL (1997) Stamens are not essential as an attractant for pollinators in females of cryptically dioecious Thalictrum pubescens Pursch. (Ranunculaceae). Sex Pl Repr 10:293–299. doi:10.1007/s004970050101

    Article  Google Scholar 

  • Davis SL (2004) Natural levels of pollination intensity and effects of pollen loads on offspring quality in females of Thalictrum pubescens (Ranunculaceae). Pl Syst Evol 244:45–54. doi:10.1007/s00606-003-0034-x

    Article  Google Scholar 

  • Dobritsa AA, Coerper D (2012) The novel plant protein INAPERTURATE POLLEN1 marks distinct cellular domains and controls formation of apertures in the Arabidopsis pollen exine. Pl Cell 24:4452–4464. doi:10.1105/tpc.112.101220

    Article  CAS  Google Scholar 

  • Doyle JA, Hotton CL (1991) Diversification of early angiosperm pollen in a cladistic context. In: Blackmore S, Barnes SH (eds) Pollen and spores: patterns of diversification. Clarendon Press, Oxford, pp 169–195

    Google Scholar 

  • Erdtman G (1966) Pollen morphology and plant taxonomy: an introduction to palynology. Hafner, New York

    Google Scholar 

  • Furness CA, Rudall PJ (2004) Pollen aperture evolution: a crucial factor for eudicot success? Trends Pl Sci 9:154–158. doi:10.1016/j.tplants.2004.01.001

    Article  CAS  Google Scholar 

  • Heslop-Harrison J (1968) Pollen wall development. Sci J (London) 161:230–237. doi:10.1126/science.161.3838.230

    CAS  Google Scholar 

  • Heslop-Harrison J (1987) Pollen Germination and pollen-tube growth. In: Bourne JG, Jeon KW, Friedlander M (eds) International review of cytology, vol 107. Academic Press, London, pp 1–78

    Chapter  Google Scholar 

  • Kocyan A, Zhang LB, Schaefer H, Renner SS (2007) A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Molec Phylogen Evol 44:553–577. doi:10.1016/j.ympev.2006.12.022

    Article  CAS  Google Scholar 

  • Kreunen SS, Osborn JM (1999) Pollen and anther development in Nelumbo (Nelumbonaceae). Amer J Bot 86:1662–1676. doi:10.2307/2656664

    Article  CAS  Google Scholar 

  • Lau T, Stephenson AG (1993) Effects of soil nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). Amer J Bot 80:763–768. doi:10.2307/2445596

    Article  CAS  Google Scholar 

  • Lord EM, Eckard KA (1984) Incompatibility between the dimorphic flowers of Collomia grandiflora, a cleistogamous species. Sci J (London) 223:695–696. doi:10.1126/science.223.4637.695

    CAS  Google Scholar 

  • Maurizio A (1956) Pollen formation in certain polyploid cultivated plants. Grana Palynol 1:59–69

    Google Scholar 

  • Mignot A, Hoss C, Dajoz I, Leuret C, Henry JP, Dreuillaux JM, Heberle-Bors E et al (1994) Pollen aperture polymorphism in the angiosperms: importance, possible causes and consequences. Acta Bot Gallica 141:109–122. doi:10.1080/12538078.1994.10515144

    Article  Google Scholar 

  • Nadot S, Ballard HE, Creach JB, Dajoz I (2000) The evolution of pollen heteromorphism in Viola: a phylogenetic approach. Pl Syst Evol 223:155–171. doi:10.1007/bf00985276

    Article  CAS  Google Scholar 

  • Ottaviano E, Sari-Gorla M, Pe E (1982) Male gametophytic selection in maize. Theor Appl Genet 63:249–254. doi:10.1007/bf00304004

    Article  CAS  PubMed  Google Scholar 

  • Ottaviano E, Sari-Gorla M, Arenari I (1983) Male gametophyte competitive ability in maize selection and implications with regard to the breeding system. In: Mulcahy D, Ottaviano E (eds) Pollen: biology and implications for plant breeding. Elsevier, Amsterdam, pp 367–374

    Google Scholar 

  • Park MM, Festerling D (1997) Thalictrum. In: Flora of North America Editorial Committee (ed) Flora of North America, vol 3. Oxford University, New York, pp 258–271

    Google Scholar 

  • Penny RH (2014) Sexual dimorphism in cryptically dioecious Thalictrum macrostylum. Int J Pl Sci 175:794–802. doi:10.1086/677229

    Article  Google Scholar 

  • Penny RH, Steven JC (2009) Sexual dimorphism in pollen grain size in cryptically dioecious Thalictrum macrostylum. Pl Syst Evol 279:11–19. doi:10.1007/s00606-008-0114-z

    Article  Google Scholar 

  • Pierce NB, Simpson MG (2009) Polyaperturate pollen types and ratios of heteromorphism in the monocot genus Conostylis (Haemodoraceae). Austral Syst Bot 22:16–30. doi:10.1071/sb08040

    Article  Google Scholar 

  • Pire SM, Dematteis M (2007) Pollen aperture heteromorphism in Centaurium pulchellum (Gentianaceae). Grana Palynol 46:1–12. doi:10.1080/00173130601101245

    Article  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/

  • Ressayre A, Godelle B, Mignot A, Gouyon PH (1998) A morphogenetic model accounting for pollen aperture pattern in flowering plants. J Theor Biol 193:321–334. doi:10.1006/jtbi.1998.0704

    Article  PubMed  Google Scholar 

  • Ressayre A, Raquin C, Mignot A, Godelle B, Gouyon PH (2002) Correlated variation in microtubule distribution, callose deposition during male post-meiotic cytokinesis, and pollen aperture number across Nicotiana species (Solanaceae). Amer J Bot 89:393–400

    Article  Google Scholar 

  • Sarkissian TS, Harder LD (2001) Direct and indirect responses to selection on pollen size in Brassica rapa L. J Evol Biol 14:456–468. doi:10.1046/j.1420-9101.2001.00285.x

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  PubMed  Google Scholar 

  • Southworth D, Pfahler P (1992) The effects of genotype and ploidy level on pollen surface sculpturing in maize (Zea mays L). Amer J Bot 79:1418–1422. doi:10.2307/2445141

    Article  Google Scholar 

  • Soza VL, Brunet J, Liston A, Salles Smith P, Di Stilio VS (2012) Phylogenetic insights into the correlates of dioecy in meadow-rues (Thalictrum, Ranunculaceae). Molec Phylogen Evol 63:180–192. doi:10.1016/j.ympev.2012.01.009

    Article  Google Scholar 

  • Soza VL, Haworth KL, Di Stilio VS (2013) Timing and consequences of recurrent polyploidy in meadow-rues (Thalictrum, Ranunculaceae). Molec Biol Evol 30:1940–1954. doi:10.1093/molbev/mst101

    Article  CAS  PubMed  Google Scholar 

  • Tamura M (1995) Systematic part. In: Hiepko P (ed) Die Naturlichen Pflanzenfamilien Ranunculaceae, vol 17. Duncker & Humblot, Berlin, pp 223–497

    Google Scholar 

  • Tejaswini (2002) Variability of pollen grain features: a plant strategy to maximize reproductive fitness in two species of Dianthus? Sex Pl Repr 14:347–353. doi:10.1007/s00497-002-0130-z

    Article  Google Scholar 

  • Till I, Valdeyron G, Gouyon PH (1989) Polymorphisme pollinique et polymorphisme génétique. Botany (Ottawa) 67:538–543. doi:10.1139/b89-075

    Google Scholar 

  • Till-Bottraud I, Venable D, Dajoz I, Gouyon P (1994) Selection on pollen morphology: a game-theory model. Amer Naturalist 144:395–411. doi:10.1086/285683

    Article  Google Scholar 

  • Till-Bottraud I, Mignot A, Depaepe R, Dajoz I (1995) Pollen heteromorphism in Nicotiana tabacum (Solanaceae). Amer J Bot 82:1040–1048. doi:10.2307/2446234

    Article  Google Scholar 

  • Till-Bottraud I, Joly D, Lachaise D, Snook RR (2005) Pollen and sperm heteromorphism: convergence across kingdoms? J Evol Biol 18:1–18. doi:10.1111/j.1420-9101.2004.00789.x

    Article  CAS  PubMed  Google Scholar 

  • Van Campo M (1976) Patterns of pollen morphological variation within taxa. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London, pp 163–183

    Google Scholar 

  • Via do Pico GM, Dematteis M (2010) Meiotic behavior and pollen morphology variation in Centaurium pulchellum (Gentianaceae). Pl Syst Evol 290:99–108. doi:10.1007/s00606-010-0352-8

    Article  Google Scholar 

  • Wodehouse R (1959) Pollen grains: their structure, identification, and significance in science and medicine. Hafner Pub. Co, New York. doi:10.2307/2419987

    Google Scholar 

Download references

Acknowledgments

The author thanks Dr. E. Knox (IND), Dr. J. Solomon (MO), Dr. B.M. Thiers (NY), Dr. B.E. Wofford (TENN) and A.P. Clark (US) for assistance in obtaining herbarium specimens and two anonymous reviewers for helpful comments on an earlier draft.

Funding

This study was funded by the Rosemary Grant Student Research Award from the Society for the Study of Evolution to R.P. Humphrey and National Science Foundation DEB-0813766 to L.F. Delph. Shipping of herbarium specimens was funded by the Indiana University Herbarium (Director: Dr. Eric Knox).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca P. Humphrey.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Handling editor: Hervé Sauquet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 111 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1 Listing of Thalictrum herbarium specimens from which pollen was collected for assessments of pollen grain size and aperture number. Each entry notes the locality where the specimen was collected, the holding herbarium, and specimen ID numbers or other identifying information as available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humphrey, R.P. Pollen heteromorphism is pervasive in Thalictrum (Ranunculaceae). Plant Syst Evol 302, 1171–1177 (2016). https://doi.org/10.1007/s00606-016-1312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-016-1312-8

Keywords

Navigation