Skip to main content
Log in

Gene dosage effects and signatures of purifying selection in lateral organ boundaries domain (LBD) genes LBD1 and LBD18

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Wood formation is an economically and environmentally important process and has played a significant role in the evolution of terrestrial plants. Despite its significance, the molecular underpinnings of the process are still poorly understood. We have previously shown that four lateral organ boundaries (LBD) transcription factors have important roles in the regulation of secondary (woody) growth with two (LBD1 and LBD4) involved in secondary phloem and ray cell development and two (LBD15 and LBD18) in secondary xylem formation. We studied gene copy number and variation in DNA and amino acid sequences of the four LBDs in a wide range of woody and herbaceous plant taxa with fully sequenced and annotated genomes. LBD1 showed the highest gene copy number across species, and gene copy number was strongly and significantly correlated with tangential ray width. The climbing vines, cucumber and grape, with wide multiseriate rays (>10 cells wide) showed the highest gene copy number. Because the growth habit of woody lianas like grape requires significant twisting and bending, it was suggested that the unlignified ray parenchyma cells likely facilitate stem flexibility and maintenance of xylem conductivity. We further demonstrate conservation of amino acids in LBD18 protein sequences specific to woody taxa downstream of the LBD domain. Neutrality tests showed evidence for strong purifying selection on these regions across various orders, indicating important functional roles in woody taxa. Additionally, structural modeling demonstrates that these regions have a significant impact on tertiary protein structure and thus are likely of significant functional importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfieri FJ, Evert RF (1968) Seasonal development of the secondary phloem in Pinus. Amer J Bot 55:518–528

    Article  Google Scholar 

  • Angyalossy V, Pace MR, Lima AC (2015) Liana anatomy: a broad perspective on structural evolution of the vascular system. In: Schnitzer S, Bongers F, Burnham RJ, Putz FE (eds) Ecology of lianas. Wiley, Chichester, pp 251–287

    Google Scholar 

  • Basson PW, Bierhorst DW (1967) An analysis of differential lateral growth in the stem of Bauhinia surinamensis. Bull Torrey Bot Club 94:404–411

    Article  Google Scholar 

  • Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Saint Yuen MM, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao YJ, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, MacKay J, Bohlmann J, Jones SJM (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5:R35

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlquist S (1985) Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. Aliso 11:139–157

    Google Scholar 

  • Carlquist S (1991) Anatomy of vine and liana stems: a review and synthesis. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 53–71

    Google Scholar 

  • Carlquist S (2001) Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer-Verlag, New York

    Book  Google Scholar 

  • Cavender-Bares J (2005) Impacts of freezing on long distance transport in woody plants. In: Holbrook NM, Zwieniecki M (eds) Vascular transport in plants. Elsevier Inc., Oxford, pp 401–424

    Chapter  Google Scholar 

  • Chase MW, Reveal JL (2009) A phylogenetic classification of the land plants to accompany APG III. Bot J Linn Soc 161:122–127

    Article  Google Scholar 

  • Craik CS, Rutter WJ, Fletterick R (1983) Splice junctions: association with variation in protein structure. Science 220:1125–1129

    Article  CAS  PubMed  Google Scholar 

  • de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of prosite signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–W365

    Article  PubMed  PubMed Central  Google Scholar 

  • Doron-Faigenboim A, Stern A, Mayrose I, Bacharach E, Pupko T (2005) Selecton: a server for detecting evolutionary forces at a single amino-acid site. Bioinformatics 21:2101–2103

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, Oxford

    Google Scholar 

  • Fisher JB, Ewers FW (1989) Wound healing in stems of lianas after twisting and girdling injuries. Bot Gaz 150:251–265

    Article  Google Scholar 

  • Fitch R (1992) WinSTAT, the statistics program for Windows. Kalmia, Cambridge

    Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotmare V, Singh P, Tule BN (2000) Wild and cultivated species of cotton. CICR Technical Bulletin 5. Central Institute for Cotton Research, Nagpur

  • Groover AT (2005) What genes make a tree a tree? Trends Pl Sci 10:210–214

    Article  CAS  Google Scholar 

  • Groover AT, Nieminen K, Helariutta Y, Mansfield SD (2010). Wood formation in Populus. In: Genetics and Genomics of Populus, Springer, New York, pp 201–224

  • Hall BG (2011) Phylogenetic trees made easy: a how-to manual, 4th edn. Sinauer Associates, Sunderland

  • Hammond N (1991) Cuello: an early Maya community in Belize. Cambridge University Press, Cambridge

  • Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer WB, Yang B, White FF, Wang N, Jones JB (2014) Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci USA 111:E521–E529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPNI (2014) The International Plant Names Index. Available at: http://www.ipni.org/index.html, Accessed 26 Feb 2014

  • Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y (2002) The Asymmetric Leaves2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Pl Cell Physiol 43:467–478

    Article  CAS  Google Scholar 

  • Kempe A, Lautenschläger T, Lange A, Neinhuis C (2014) How to become a tree without wood—biomechanical analysis of the stem of Carica papaya L. Pl Biol (Stuttgart) 16:264–271

    Article  CAS  Google Scholar 

  • Kumar R, Choudhary V, Mishra S, Varma I, Mattiason B (2002) Adhesives and plastics based on soy protein products. Industr Crops Prod 16:155–172

    Article  CAS  Google Scholar 

  • Larson PR (1994) The vascular cambium: development and structure. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Li Z, Zou L, Ye G, Xiong L, Ji Z, Zakria M, Hong N, Wang G, Chen G (2014) A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp. citri. Molec Pl 7:912–915

    Article  CAS  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annual Rev Pl Biol 57:203–232

    Article  CAS  Google Scholar 

  • Majer C, Hochholdinger F (2011) Defining the boundaries: structure and function of LOB domain proteins. Trends Plant Sci 16:47–52

    Article  CAS  PubMed  Google Scholar 

  • Masrahi YS (2014) Ecological significance of wood anatomy in two lianas from arid southwestern Saudi Arabia. Saudi J Biol Sci 21:334–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura Y, Iwakawa H, Machida Y, Machida C (2009) Characterization of genes in the I (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Pl J 58:525–537

    Article  CAS  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Pl Molec Biol 47:239–274

    Article  CAS  Google Scholar 

  • Neale D, Wegrzyn J, Stevens K, Zimin A, Puiu D, Crepeau M, Cardeno C, Koriabine M, Holtz-Morris A, Liechty J, Martinez-Garcia P, Vasquez-Gross H, Lin B, Zieve J, Dougherty W, Fuentes-Soriano S, Wu L-S, Gilbert D, Marcais G, Roberts M, Holt C, Yandell M, Davis J, Smith K, Dean J, Lorenz W, Whetten R, Sederoff R, Wheeler N, McGuire P, Main D, Loopstra C, Mockaitis K, deJong P, Yorke J, Salzberg S, Langley C (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59

    Article  PubMed  PubMed Central  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kaller M, Luthman J, Lysholm F, Niittyla T, Olson A, Rilakovic N, Ritland C, Rossello JA, Sena J, Svensson T, Talavera-Lopez C, Theissen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Gil RG, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ (2013) Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502:228–231

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Pl Physiol 127:1513–1523

    Article  CAS  Google Scholar 

  • Poorter L, McDonald I, Alarcon A, Fichtler E, Licona JC, Pena-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185:481–492

    Article  PubMed  Google Scholar 

  • Putz F, Holbrook N (1991) Biomechanical studies of vines. In: Putz FE, Mooney HA (eds) The biology of vines, Cambridge University Press, Cambridge, pp 73–97

  • Růžička K, Ursache R, Hejátko J, Helariutta Y (2015) Xylem development—from the cradle to the grave. New Phytol 207:519–535

    Article  PubMed  Google Scholar 

  • Schweingruber F, Landolt W (2005) The xylem database. Available at: http://www.wsl.ch/dendropro/xylemdb/, Accessed 14 Oct 2014

  • Schweingruber FH, Börner A, Schulze E-D (2007) Atlas of woody plant stems: evolution, structure, and environmental modifications. Springer, Berlin-Heidelberg

    Google Scholar 

  • Scofield S, Murray JAH (2006) KNOX gene function in plant stem cell niches. Pl Molec Biol 60:929–946

  • Sedjo RA (2001) The role of forest plantations in the world’s future timber supply. Forest Chron 77:221–225

    Article  Google Scholar 

  • Shuai B, Reynaga-Pena CG, Springer PS (2002) The lateral organ boundaries gene defines a novel, plant-specific gene family. Pl Physiol 129:747–761

    Article  CAS  Google Scholar 

  • Soyano T, Thitamadee S, Machida Y, Chua NH (2008) Asymmetric Leaves2-Like19/Lateral Organ Boundaries Domain30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis. Pl Cell 20:3359–3373

    Article  CAS  Google Scholar 

  • Spicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186:577–592

    Article  CAS  PubMed  Google Scholar 

  • Spicer R (2014) Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport. J Exp Bot 65:1829–1848

    Article  CAS  PubMed  Google Scholar 

  • Stern A, Doron-Faigenboim A, Erez E, Martz E, Bacharach E, Pupko T (2007) Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res 35:506–511

    Article  Google Scholar 

  • Stevens PF (2001) Angiosperm Phylogeny Website, version 13. Available at: http://www.mobot.org/MOBOT/research/APweb/, Accessed 14 October 2014

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Schoot C, van Bel AJ (1989) Architecture of the internodal xylem of tomato (Solanum lycopersicum) with reference to longitudinal and lateral transfer. Am J Bot 76:487–503

    Article  Google Scholar 

  • Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJM, MacKay J, Birol I, Bohlmann J (2015) Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Pl J 83:189–212

    Article  CAS  Google Scholar 

  • Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross H, Dougherty WM, Lin BY, Zieve JJ, Martinez-Garcia PJ, Holt C, Yandell M, Zimin A, Yorke JA, Crepeau M, Puiu D, Salzberg SL, de Jong P, Mockaitis K, Main D, Langley CH, Neale DB (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196:891–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler EA (2004-onwards) InsideWood Website. Available at: http://insidewood.lib.ncsu.edu/search, Accessed 5 May 2015

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, McGinnis S, Madden TL (2006) BLAST: improvements for better sequence analysis. Nucleic Acids Res 34:W6–W9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yordanov YS, Busov V (2011) Boundary genes in regulation and evolution of secondary growth. Plant Signal Behav 6:688–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yordanov YS, Regan S, Busov V (2010) Members of the lateral organ boundaries domain transcription factor family are involved in the regulation of secondary growth in Populus. Pl Cell 22:3662–3677

    Article  CAS  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Elo A, Helariutta Y (2011) Arabidopsis as a model for wood formation. Curr Opinion Biotechnol 22:293–299

    Article  CAS  Google Scholar 

  • Zimin A, Stevens KA, Crepeau M, Holtz-Morris A, Koriabine M, Marcais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196:875–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for the project was provided by the USDA-NIFA grant (2012-67013-19389) to VB, YY and OG. We would also like to thank the Biochemistry and Molecular Biology program at Michigan Technological University (MTU) which supported the research for one semester. Additional support was made available by MTU’s Ecosystem Science and Biotech Research Center. We would like to thank for the very constructive comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Gailing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the USDA-NIFA grant (grant number 2012-67013-19389).

Additional information

Handling editor: Günter Theißen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

606_2015_1272_MOESM1_ESM.pdf

Neighbor-Joining tree based on complete protein sequences of all LBD genes from Arabidopsis thaliana and Brassica rapa. LBD homologs and gene copy numbers for each species are determined by the position in the phylogenetic tree relative to Arabidopsis thaliana LBD genes (PDF 35 kb)

606_2015_1272_MOESM2_ESM.pdf

Neighbor-Joining tree based on complete protein sequences of LBD1 genes. Bootstrap values above 50 and genes from woody species are highlighted in yellow (PDF 394 kb)

606_2015_1272_MOESM3_ESM.pdf

Neighbor-Joining tree based on complete protein sequences of LBD4 genes. Bootstrap values above 50 and genes from woody species are highlighted in yellow (PDF 277 kb)

606_2015_1272_MOESM4_ESM.pdf

Neighbor-Joining tree based on complete protein sequences of LBD15 genes. Bootstrap values above 50 and genes from woody species are highlighted in yellow (PDF 288 kb)

606_2015_1272_MOESM5_ESM.pdf

Neighbor-Joining tree based on complete protein sequences of LBD18 genes. Bootstrap values above 50 and genes from woody species are highlighted in yellow (PDF 47 kb)

606_2015_1272_MOESM6_ESM.pdf

Neighbor-Joining tree based on complete DNA coding sequences of LBD18 genes. Bootstrap values above 50 and genes from woody species are highlighted in yellow (PDF 47 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Neighbor-Joining tree based on complete protein sequences of all LBD genes from Arabidopsis thaliana and Brassica rapa. LBD homologs and gene copy numbers for each species are determined by the position in the phylogenetic tree relative to Arabidopsis thaliana LBD genes.

Online Resource 2. Neighbor-Joining tree based on complete protein sequences of LBD1 genes. Bootstrap values above 50 and genes from woody species are highlighted in yellow.

Online Resource 3. Neighbor-Joining tree based on complete protein sequences of LBD4 genes. Bootstrap values above 50 and genes from woody species are highlighted in yellow.

Online Resource 4. Neighbor-Joining tree based on complete protein sequences of LBD15 genes. Bootstrap values above 50 and genes from woody species are highlighted in yellow.

Online Resource 5. Neighbor-Joining tree based on complete protein sequences of LBD18 genes. Bootstrap values above 50 and genes from woody species are highlighted in yellow.

Online Resource 6. Neighbor-Joining tree based on complete DNA coding sequences of LBD18 genes. Bootstrap values above 50 and genes from woody species are highlighted in yellow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bdeir, R., Busov, V., Yordanov, Y. et al. Gene dosage effects and signatures of purifying selection in lateral organ boundaries domain (LBD) genes LBD1 and LBD18. Plant Syst Evol 302, 433–445 (2016). https://doi.org/10.1007/s00606-015-1272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1272-4

Keywords

Navigation