Skip to main content
Log in

Subfamilial and tribal relationships of Ranunculaceae: evidence from eight molecular markers

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The first molecular phylogenies of the flowering plant family Ranunculaceae were published more than twenty years ago, and have led to major changes in the infrafamilial classification. However, the current phylogeny is not yet well supported, and relationships among subfamilies and tribes of Ranunculaceae remain an open question. Eight molecular markers from the three genomes (nuclear, chloroplast and mitochondrial) were selected to investigate these relationships, including new markers for the family (two homologs of the nuclear CYCLOIDEA gene, the chloroplast gene ndhF, and the mitochondrial intron nad4-I1). The combination of multiple markers led to better resolution and higher support of phylogenetic relationships among subfamilies of Ranunculaceae, and among tribes within subfamily Ranunculoideae. Our results challenge the monophyly of Ranunculoideae as currently circumscribed due to the position of tribe Adonideae (Ranunculoideae), sister to Thalictroideae. We suggest that Thalictroideae could be merged with Ranunculoideae in an enlarged single subfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucl Acids Res 38:W7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molec Biol Evol 20:255–266

    Article  CAS  PubMed  Google Scholar 

  • APG (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. Bot J Linn Soc 161:105–121

  • Bartlett ME, Specht CD (2011) Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. Amer J Bot 98:227–243

    Article  CAS  Google Scholar 

  • Cai YF, Li SW, Liu Y, Quan S, Chen M, Xie YF, Jiang HZ, Wei EZ, Yin NW, Wang L, Zhang R, Huang CL, He XH, Jiang MF (2009) Molecular phylogeny of Ranunculaceae based on internal transcribed spacer sequences. African J Biotech 8:5215–5224

    CAS  Google Scholar 

  • Citerne H, Jabbour F, Nadot S, Damerval C (2010) The Evolution of floral symmetry. Advances Bot Res 54:85–137

    Article  CAS  Google Scholar 

  • Citerne H, Le Guilloux M, Sannier J, Nadot S, Damerval C (2013) Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots. PLOS One 8:e74803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compton JA, Culham A, Jury SL (1998) Reclassification of Actaea to include Cimicifuga and Souliea (Ranunculaceae): phylogeny inferred from morphology, nrDNA ITS, and cpDNA trnL-F sequence variation. Taxon 47:593–634

    Article  Google Scholar 

  • Damerval C, Le Guilloux M, Jager M, Charon C (2007) Diversity and evolution of CYCLOIDEA-Like TCP genes in relation to flower development in Papaveraceae. Pl Physiol 143:759–772

    Article  CAS  Google Scholar 

  • Drummond JR, Hutchinson J (1920) A revision of Isopyrum (Ranunculaceae) and its nearer allies. Bull Misc Inform Kew 1920:145–169

    Google Scholar 

  • Emadzade K, Lehnebach C, Lockhart P, Horandl E (2010) A molecular phylogeny, morphology and classification of genera of Ranunculeae (Ranunculaceae). Taxon 59:809–828

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylo- genetic analysis. Syst Biol 42:182–192

    Article  Google Scholar 

  • Hodges SA (1997) Floral nectar spurs and diversification. Int J Pl Sci 158(Suppl S):S81–S88

  • Hoot SB (1991) Phylogeny of the Ranunculaceae based on epidermal microcharacters and macromorphology. Syst Bot 16:741–755

    Article  Google Scholar 

  • Hoot SB (1995) Phylogeny of the Ranunculaceae based on preliminary atpB, rbcL and 18S nuclear ribosomal DNA sequence data. Pl Syst Evol (Suppl 9):241–251

  • Hoot SB, Kramer J, Arroyo Mary TK (2008) Phylogenetic position of the South American dioecious genus Hamadryas and related Ranunculeae (Ranunculaceae). Int J Pl Sci 169:433–443

    Article  CAS  Google Scholar 

  • Hoot SB, Meyer KM, Manning JC (2012) Phylogeny and reclassification of Anemone (Ranunculaceae), with an emphasis on Austral species. Syst Bot 37:139–152

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic tree. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jabbour F, Renner SS (2011) Resurrection of the genus Staphisagria J. Hill, sister to all the other Delphinieae (Ranunculaceae). PhytoKeys 7:21–26

    Article  PubMed  Google Scholar 

  • Jabbour F, Cossard G, Le Guilloux M, Sannier J, Nadot S, Damerval C (2014) Specific duplication and dorsoventrally asymmetric expression patterns of CYCLOIDEA-like genes in zygomorphic species of Ranunculaceae. PLOS One 9:e95727

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen U, Hoot SB, Johansson JT, Kosuge K (1995) Systematics and phylogeny of the Ranunculaceae; a revised family concept on the basis of molecular data. Pl Syst Evol Suppl 9:273–280

    Google Scholar 

  • Johansson JT (1995) A revised chloroplast DNA phylogeny of the Ranunculaceae. Pl Syst Evol Suppl 9:253–271

    Google Scholar 

  • Johansson JT (1998) Chloroplast DNA restriction site mapping and the phylogeny of Ranunculus (Ranunculaceae). Pl Syst Evol 213:1–19

    Article  Google Scholar 

  • Johansson JT, Jansen RK (1991) Chloroplast DNA variation among five species of Ranunculaceae: structure, sequence divergence, and phylogenetic relationships. Pl Syst Evol 178:9–25

    Article  CAS  Google Scholar 

  • Johansson JT, Jansen RK (1993) Chloroplast DNA variation and phylogeny of the Ranunculaceae. Pl Syst Evol 187:29–49

    Article  CAS  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. JASA 90:773–795

    Google Scholar 

  • Katoh K, Misawa K, K-i Kuma, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YD, Kim S-H, Kim CH, Jansen RK (2004) Phylogeny of Berberidaceae based on sequences of the chloroplast gene ndhF. Biochem Syst Ecol 32:291–301

    Article  CAS  Google Scholar 

  • Koelsch A, Gleissberg S (2006) Diversification of CYCLOIDEA-Like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae s.str. Pl Biol 8:680–687

    Article  CAS  Google Scholar 

  • Kosuge K, Sawada K, Denda T (1995) Phylogenetic relationships of some genera in the Ranunculaceae based on alcohol dehydrogenase genes. Pl Syst Evol Suppl 9:263–271

    Google Scholar 

  • Lehnebach C, Cano A, Monsalve C, McLenachan P, Hörandl E, Lockhart P (2007) Phylogenetic relationships of the monotypic Peruvian genus Laccopetalum (Ranunculaceae). Pl Syst Evol 264:109–116

    Article  Google Scholar 

  • Loconte H, Campbell LM, Stevenson DW (1995) Ordinal and familial relationships of ranunculid genera. Pl Syst Evol 99–118

  • Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799

    Article  CAS  PubMed  Google Scholar 

  • Miikeda O, Kita K, Handa T (2006) Phylogenetic relationships of Clematis (Ranunculaceae) based on chloroplast and nuclear DNA sequences. Bot J Linn Soc 152:153–168

    Article  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, pp 1–8

  • Nylander JAA (2004) MrAIC. pl. Program distributed by the author, Evolutionary Biology Centre, Uppsala University, Uppsala

  • Pabón-Mora N, Hidalgo O, Gleissberg S, Litt A (2013) Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales. Frontiers Pl Sci 4:358

    Google Scholar 

  • Preston JC, Hileman LC (2012) Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo 3:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ro KE, McPheron BA (1997) Molecular Phylogeny of the Aquilegia Group (Ranunculaceae) based on Internal Transcribed Spacers and 5.8S Nuclear Ribosomal DNA. Biochem Syst Ecol 25:445–461

    Article  CAS  Google Scholar 

  • Ro KE, Keener CS, McPheron BA (1997) Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S ribosomal DNA in inferring intrafamilial relationships. Molec Phylogen Evol 8:117–127

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Molec Biol 132:365–386

    CAS  Google Scholar 

  • Sargent RD (2004) Floral symmetry affects speciation rates in angiosperms. Proc Roy Soc London Ser B Biol Sci 271:603–608

    Article  Google Scholar 

  • Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508

    Article  PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molec Biol Evol 16:1114–1116

    Article  CAS  Google Scholar 

  • Soltis DE, Senters AE, Zanis MJ, Kim S, Thompson JD, Soltis PS, Ronse De Craene LP, Endress PK, Farris JS (2003) Gunnerales are sister to other core eudicots: implications for the evolution of pentamery. Amer J Bot 90:461–470

    Article  Google Scholar 

  • Soza VL, Brunet J, Liston A, Smith PS, Di Stilio VS (2012) Phylogenetic insights into the correlates of dioecy in meadow-rues (Thalictrum, Ranunculaceae). Molec Phylogen Evol 63:180–192

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463

    Article  CAS  PubMed  Google Scholar 

  • Stevens PF (2001) Angiosperm Phylogeny Website. Version 12, July 2012 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/. Accessed Nov 2015

  • Tamura M (1968) Morphology, ecology and phylogeny of the Ranunculaceae VIII. Sci Rep Osaka Univ 17:41–56

    Google Scholar 

  • Tamura M (1993) Ranunculaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants II. Springer, Berlin, pp 563–583

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molec Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson J (1997) The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne R (1992) Classification and geography of the flowering plants. Bot Rev 58:225–327

    Article  Google Scholar 

  • Wang W, Chen Z-D (2007) Generic level phylogeny of Thalictroideae (Ranunculaceae)—implications for taxonomic status of Iand petal evolution. Taxon 56:811–821

    Article  Google Scholar 

  • Wang ZF, Ren Y (2008) Ovule morphogenesis in Ranunculaceae and its systematic significance. Ann Bot (Oxford) 101:447–462

    Article  Google Scholar 

  • Wang W-t, Chang M-c, Fang M-y, Ling P-p, Ting C-t, Wang S-h, Liou L (1980) Ranunculaceae subfam. Ranunculoideae. In: Wen-tsai W (eds) Fl. Reipubl. Popularis Sin., Science Press, Beijing, pp 1–345

  • Wang W, Li RQ, Chen Z-D (2005) Systematic position of Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear sequences. Pl Syst Evol 255:41–54

    Article  CAS  Google Scholar 

  • Wang W, Lu A-M, Ren Y, Endress ME, Chen Z-D (2009) Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspect Pl Ecol Evol Syst 11:81–110

    Article  Google Scholar 

  • Wang W, Hu H, Xiang XG, Yu SX, Chen ZD (2010) Phylogenetic placements of Calathodes and Megaleranthis (Ranunculaceae): evidence from molecular and morphological data. Taxon 59:1712–1720

    Google Scholar 

  • Wiens JJ (2005) Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Syst Biol 54:731–742

    Article  PubMed  Google Scholar 

  • Wiens JJ, Moen DS (2008) Missing data and the accuracy of Bayesian phylogenetics. J Syst Evol 46:307–314

    Google Scholar 

  • Wiens JJ, Morrill MC (2011) Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst Biol 60:719–731

    Article  PubMed  Google Scholar 

  • Xie W, Lewis PO, Fan Y, Kuo L, Chen M-H (2011) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol 60:150–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY et al (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Pl Physiol 149:235–244

Download references

Acknowledgments

This work was supported by a grant from Agence Nationale de la Recherche [ANR-07-BLAN-0112-02] and by a grant from Institut Diversité Ecologie Evolution du Vivant (2011–2012). We thank Olivier Chauveau for technical assistance with the sequencing and for helpful discussions, and Bruno Lascaux for helping us to collect plant material in Orsay. We also thank the Royal Botanic Garden Edinburgh for permission to collect material, and Fiona Inches for assistance with the sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Nadot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Alexandra Nora Muellner-Riehl.

Electronic supplementary material

606_2015_1270_MOESM1_ESM.pdf

Online Resource 1. Voucher information and GenBank accession numbers of the sequences used in this study. PBL: Parc Botanique de Launay(F), JBL: Jardin Botanique de Lyon (France), JBVP: Jardin Botanique de la Ville de Paris (F), RBGE: Royal Botanic Garden Edinburgh (UK),BFAG: Betty Ford Alpine Gardens (USA, Colorado), ROST: Botanischer Garten Rostock (D), GEISS: Botanischer Garten Giessen (F), JS:collected by Julie Sannier (wild or commercial origin). Voucher information is given only for the newly generated sequences (PDF 856 kb)

Online Resource 2. List of primers used in this study and PCR conditions followed for mostof the samples (PDF 1696 kb)

606_2015_1270_MOESM3_ESM.pdf

Online Resource 3. Schematic representation of the DNA regions sequenced in this study andof the primers used.A. The matK region divided into three parts, 3’trnK-matK intron, matK gene and matK-5’trnKintron. B. The ndhF region. C. Part of the nad4-I1 intronic region. Coding parts are in gray,non-coding regions are represented by straight lines. Primers are represented by arrows. Theintron 1 of subunit IV of NADH dehydrogenase was only partially amplified. Dashed linessymbolise the rest of the intron. D. The CYCLOIDEA-like region with primers represented byarrows (PDF 3236 kb)

606_2015_1270_MOESM4_ESM.pdf

Online Resource 4. PMaximum likelihood tree obtained from the combined alignment of CYC1 and CYC2 sequences showing the two paralogous lineages (PDF 319 kb)

606_2015_1270_MOESM5_ESM.pdf

Online Resource 5. Bayesian inference cladogram of the Ranunculaceae obtained from the matK dataset.Numbers above branches are Bayesian posterior probabilities (>0.5) and ML bootstrap percentages (>50%). Subfamilies and tribes are according to the classification of Wang et al. (2009) (PDF 432 kb)

606_2015_1270_MOESM6_ESM.pdf

Online Resource 6. Bayesian inference cladogram of the Ranunculaceae obtained from the ndhF dataset.Description: Numbers above branches are Bayesian posterior probabilities (>0.5) and ML bootstrap percentages (>50%). Subfamilial and tribal classification is based on Wang et al. (2009). Stars indicate nodes that are not found in ML tree (PDF 428 kb)

606_2015_1270_MOESM7_ESM.pdf

Online Resource 7. Bayesian inference cladogram of the Ranunculaceae obtained from the rbcL dataset.Description: Numbers above branches are Bayesian posterior probabilities (>0.5) and ML bootstrap percentages (>50%). Subfamilial and tribal classification is based on Wang et al. (2009). Stars indicate nodes that are not found in ML tree (PDF 436 kb)

606_2015_1270_MOESM8_ESM.pdf

Online Resource 8. Bayesian inference cladogram of the Ranunculaceae obtained from the trnL dataset.Description: Numbers above branches are Bayesian posterior probabilities (>0.5) and ML bootstrap percentages (>50%). Subfamilial and tribal classification is based on Wang et al. (2009). Stars indicate nodes that are not found in ML tree (PDF 427 kb)

606_2015_1270_MOESM9_ESM.pdf

Online Resource 9. Bayesian inference tree obtained from the combined analysis of all chloroplast markers (matK, ndhF, rbcL, trnL).Description: Numbers above branches are Bayesian posterior probabilities (>0.5) and bootstrap percentages (>50%). Subfamilies and tribes are according to the classification of Wang et al. (2009). Stars indicate nodes that are not found in the ML tree (PDF 433 kb)

606_2015_1270_MOESM10_ESM.pdf

Online Resource 10. Bayesian inference cladogram of the Ranunculaceae obtained from the nad4-I1 dataset.Description: Numbers above branches are Bayesian posterior probabilities (>0.5) and ML bootstrap percentages (>50%). Subfamilies and tribes are according to the classification of Wang et al. (2009) (PDF 446 kb)

606_2015_1270_MOESM11_ESM.pdf

Online Resource 11. Bayesian inference tree obtained from the ITS dataset.Description: Numbers above branches are Bayesian posterior probabilities (>0.5) andbootstrap percentages (>50%). Subfamilies and tribes are according to the classification ofWang et al. (2009). Stars indicate nodes that are not found in the ML tree (PDF 417 kb)

606_2015_1270_MOESM12_ESM.pdf

Online Resource 12. Bayesian inference tree obtained from the combined analysis of nuclearmarkers (ITS, RanaCYL1, RanaCYL2).Description: Numbers above branches are Bayesian posterior probabilities (>0.5) andbootstrap percentages (>50%). Bootstrap support values lower than 50% are replaced bydashes. Subfamilies and tribes are according to the classification of Wang et al. (2009). Starsindicate nodes that are not found in the ML tree (PDF 493 kb)

606_2015_1270_MOESM13_ESM.pdf

Online Resource 13. Bayesian inference phylogram obtained from the total evidence datasetincluding all markers.Description: Numbers above the branches are Bayesian posterior probabilities and bootstrappercentages (>50%). Subfamilies and tribes are according to the classification of Wang et al.(2009). Stars indicate nodes that are not found in ML tree (PDF 438 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Voucher information and GenBank accession numbers of the sequences used in this study.

Online Resource 2. List of primers used in this study and PCR conditions followed for most of the samples.

Online Resource 3. Schematic representation of the DNA regions sequenced in this study and of the primers used.

Online Resource 4. Maximum likelihood tree obtained from the combined alignment of CYC1 and CYC2 sequences showing the two paralogous lineages.

Online Resource 5. Bayesian inference cladogram of the Ranunculaceae obtained from the matK dataset.

Online Resource 6. Bayesian inference cladogram of the Ranunculaceae obtained from the ndhF dataset.

Online Resource 7. Bayesian inference cladogram of the Ranunculaceae obtained from the rbcL dataset.

Online Resource 8. Bayesian inference cladogram of the Ranunculaceae obtained from the trnL dataset.

Online Resource 9. Bayesian inference tree obtained from the combined analysis of all chloroplast markers (matK, ndhF, rbcL, trnL).

Online Resource 10. Bayesian inference cladogram of the Ranunculaceae obtained from the nad4-I1 dataset.

Online Resource 11. Bayesian inference tree obtained from the ITS dataset.

Online Resource 12. Bayesian inference tree obtained from the combined analysis of nuclear markers (ITS, RanaCYL1, RanaCYL2).

Online Resource 13. Bayesian inference phylogram obtained from the total evidence dataset including all markers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossard, G., Sannier, J., Sauquet, H. et al. Subfamilial and tribal relationships of Ranunculaceae: evidence from eight molecular markers. Plant Syst Evol 302, 419–431 (2016). https://doi.org/10.1007/s00606-015-1270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1270-6

Keywords

Navigation