Skip to main content

Advertisement

Log in

Natural selection under contrasting ecological conditions in the aromatic plant Lippia graveolens (H.B.K., Verbenaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Understanding the genetic basis for how organisms adapt to a changing environment is a major topic in plant evolution, particularly in widely distributed species. Mexican oregano (Lippia graveolens) grows naturally in an extensive area with marked climatic and environmental differences. This species is therefore an interesting model that can be used to understand how genetic variation responds to environmental changes along climatic clines. The present study aimed to answer the questions: are there alleles likely to be under natural selection in different environments? And, how is climate related to candidate loci under selection? Genetic structure, genetic diversity, and potential adaptive molecular markers under selection were evaluated in 22 populations under contrasting environmental conditions. To assess genetic diversity, six inter-simple sequence repeat (iSSR) primers were used on a total of 327 individuals. Bioclimatic prediction data from WORLDCLIM v1.4 were used for each population. Population structure revealed three clearly distinct genetic groups (F ST = 0.589, P < 0.0001). Mean within-population genetic diversity was low (H S = 0.104 ± 0.008), populations in the north region showed the lowest diversity. Three different approaches, Bayesian analysis, hierarchical analysis, and a third one using logistic regression, were employed to identify adaptive loci likely to be under selection. The first two approaches together detected 12 loci with substantial evidence of selection, but the logistic regression approach identified only two loci associated with four environmental variables. Results show that this species is responding differently to environmental conditions (temperature and humidity) and suggest ongoing processes of local adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Molec Ecol 13:969–980

    Article  CAS  Google Scholar 

  • Bohonak AJ (2002) IBD (Isolation By Distance): a program for analyses of isolation by distance. J Heredity 93:153–154

    Article  CAS  Google Scholar 

  • Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Molec Ecol 16:3737–3758

    Article  CAS  Google Scholar 

  • Calvo-Irabién LM, Parra-Tabla V, Acosta-Arriola V, Escalante-Erosa F, Díaz-Vera L, Dzib GR, Peña-Rodríguez LM (2014) Phytochemical diversity of the essential oils of Mexican oregano (Lippia graveolens Kunth) populations along an edapho-climatic gradient. Chem Biodivers 11:1010–1021

    Article  PubMed  Google Scholar 

  • Coop G, Witonsky D, Rienzo AD, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruickshank TE, Hahn MW (2014) Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Molec Ecol 23:3133–3157

    Article  Google Scholar 

  • De Mita S, Thuillet A-C, Gay L, Ahmadi N, Manel S, Ronfort J, Vigouroux Y (2013) Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Molec Ecol 22:1383–1399

    Article  Google Scholar 

  • Delfine S, Loreto F, Pinelli P, Tognetti R, Alvino A (2005) Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agric Eco-syst Environm 106:243–252

    Article  CAS  Google Scholar 

  • Deshmukh R, Tomar NS, Tripathi N, Tiwari S (2012) Identification of RAPD and ISSR markers for drought tolerance in wheat (Triticum aestivum L.). Physiol Molec Biol Pl 18:101–104

    Article  CAS  Google Scholar 

  • Earl DA (2011). Structure Harvester v0.6.7. [homepage on the Internet]. Available at: http://users.soe.ucsc.edu/~dearl/software/structureHarvester/. Accessed 19 March 2014

  • Eckert AJ, Eckert ML, Hall BD (2010) Effects of historical demography and ecological context on spatial patterns of genetic diversity within foxtail pine (Pinus balfouriana; Pinaceae) stands located in the Klamath mountains, California. Amer J Bot 97:650–659

    Article  Google Scholar 

  • Ehlers BK, Thompson J (2004) Do co-occurring plant species adapt to one another? The response of Bromus erectus to the presence of different Thymus vulgaris chemotypes. Oecologia 141:511–518

    Article  PubMed  Google Scholar 

  • Endler JA (1986) Natural Selection in the Wild. Princeton University Press, Princeton

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin (version 3.5): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    Google Scholar 

  • Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structure population. Heredity 103:285–298

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molec Ecol Notes 7:574–578

    Article  CAS  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed Central  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) An Introduction to Conservation Genetics. Cambridge University Press, New York

    Book  Google Scholar 

  • García E (1988) Modificaciones al Sisitema de Clasificación Climática de Köppen (para adaptarlos a las condiciones de la República Mexicana), 4th edn. Offset Larios, Mexico

    Google Scholar 

  • Gardner KM, Latta RG (2006) Identifying loci under selection across contrasting environments in Avena barbata using quantitative trait locus mapping. Molec Ecol 15:1321–1333

    Article  CAS  Google Scholar 

  • Goulao LF, Oliveira CM (2014) Multilocus profiling with AFLP, ISSR, and SAMPL. Pascale Besse (ed.), Molecular plant taxonomy: methods and protocols, methods in molecular biology, vol. 1115. doi:10.1007/978-1-62703-767-9_11

  • Gram WK, Sork VL (2001) Association between environmental and genetic heterogeneity in forest tree population. Ecology 82:2012–2021

    Article  Google Scholar 

  • Guan BC, Cheng-Xing F, Ying-Xiong Q, Shi-Liang Z, Comes HP (2010) Genetic structure and breeding system of a rare understory herb, Dysosma versipellis (Berberidaceae), from Temperate Deciduous Forests in China. Amer J Bot 97:111–122

    Article  CAS  Google Scholar 

  • Guillot G, Renaud S, Ledevin R, Michaux J, Claude J (2012) A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst Biol 61:897–911

    Article  PubMed  Google Scholar 

  • Hall D, Luquez V, Garcia VM, St Onge KR, Jansson S, Ingvarsson PK (2007) Adaptive population differentiation in phenology across a latitudinal gradient in European aspen Populus tremula, L.: a comparison of neutral markers, candidate genes and phenotypic traits. Evolution 61:2849–2860

    Article  PubMed  Google Scholar 

  • Hamasha HR, Schmidt-Lebuhn AN, Durka W, Schleuning M, Hensen I (2013) Bioclimatic regions influence genetic structure of four Jordain Stipa species. Pl Biol (Stuttgart) 15:882–891

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4: 9. Available at: http://folk.uio.no/ohammer/past

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forest 6:95–124

    Article  Google Scholar 

  • Herrera CM, Bazaga P (2008) Population-genomic approach reveals adaptive floral divergence in discrete populations of a hawk moth-pollinated violet. Molec Ecol 17:5378–5390

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hoekstra HE, Hirschmann RJ, Bunday RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse colour pattern. Science 313:101–104

    Article  CAS  PubMed  Google Scholar 

  • Holderegger R, Herrmann D, Poncet B, Gugerli F, Thuiller W, Taberlet P, Gielly L, Rioux D, Brodbeck S, Aubert S, Manel S (2008) Land ahead: using genome scans to identify molecular markers of adaptive relevance. Pl Ecol Divers 1:273–283

    Article  Google Scholar 

  • Holsinger KE, Lewis PO (2002) A Bayesian approach to inferring population structure from dominant markers. Molec Ecol 11:1157–1164

    Article  CAS  Google Scholar 

  • Holsinger, KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. EEB Articles. Paper 22. Available at: http://digitalcommons.uconn.edu/eeb_articles/22

  • Hu Y, Wang L, Xie X, Yang J, Li Y, Zhang H (2010) Genetic diversity of wild populations of Rheum tanguticum endemic to China as revealed by ISSR analysis. Biochem Syst Ecol 38:264–274

    Article  CAS  Google Scholar 

  • Huh JH, Kang BC, Nahm SH, Kim S, Ha KS, Lee MH, Kim BD (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp). Theor Appl Genet 102:524–530

    Article  CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 14:1801–1806

    Article  Google Scholar 

  • Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Molec Ecol 16:3955–3969

    Article  CAS  Google Scholar 

  • Joost S, Kalbermatten M, Bonin A (2008) Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Molec Ecol Resour 8:957–960

    Article  Google Scholar 

  • Jump AS, Hunt JM, Martinez-Izquierdo JA, Penuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Molec Ecol 15:3469–3480

    Article  CAS  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Kawecki TJ, Barton NH, Fry JD (1997) Mutation collapse of fitness in marginal habitats and the evolution of ecological specialization. J Evol Biol 10:407–429

    Article  Google Scholar 

  • Keller SR, Levsen N, Olson MS, Tiffin P (2012) Local adaptation in the flowering-time gene network of balsam polar, Populus balsamifer L. Molec Biol Evol 29:3143–3152

    Article  CAS  PubMed  Google Scholar 

  • Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Amer Naturalist 87:331–333

    Article  Google Scholar 

  • Levin DA (1976) The chemical defenses of plants to pathogens and herbivores. Annual Rev Ecol Syst S 7:121–159

    Article  CAS  Google Scholar 

  • Lewontin R (1974) The genetic basis of evolutionary change. Columbia University Press, New York, p 337

  • Lewontin R, Krakauer J (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 151:343–357

    Google Scholar 

  • Liu WS, Dong M, Song Z-P, Wei W (2009) Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai-Tibet Platau. Ann Appl Biol 154:57–65

    Article  CAS  Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics. Blackwell Publishing, Malden

    Google Scholar 

  • Lowry DB, Bherman KD, Grabowski P, Morris GP, Kiniry JR, Juenger TE (2014) Adaptations between ecotypes and along environmental gradients in Panicum virgatum. Amer Naturalist 183:682–692

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Molec Ecol 3:91–99

    Article  CAS  Google Scholar 

  • Manica-Cattani MF, Zacaria J, Pauletti G, Atti-Serafini L, Echeverrigaray S (2009) Genetic variation among South Brazilian accessions of Lippia alba Mill. (Verbenaceae) detected by ISSR and RAPD markers. Braz J Biol 69:375–380

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Natarén D, Parra-Tabla V, Dzib G, Calvo-Irabién LM (2011) Morphology and density of glandular trichomes in populations of Mexican oregano (Lippia graveolens H.B.K., Verbenaceae), and the relationship between trichome density and climate. J Torrey Bot Soc 138:134–144

    Article  Google Scholar 

  • Martínez-Natarén D, Parra-Tabla V, Ferrer-Ortega M, Calvo-Irabién LM (2014) Genetic diversity and genetic structure in wild populations of Mexican oregano (Lippia graveolens HBK) and its relationship with the chemical composition of the essential oil. Pl Syst Evol 300:535–547

    Article  Google Scholar 

  • Meléndez-Rentería NP, Silva-Vázquez S, Neváres-Morrillón GV, Aguilar CN, Rodríguez-Herrera R (2010) Genetic diversity of Mexican oregano Lippia berlandieri Schauer, from the Chihuahuan desert area. Pl Breed Seed Sci 62:85–96

    Google Scholar 

  • Mitchell-Olds T, Gershenzon J, Baldwin I, Boland W (1998) Chemical ecology in the molecular era. Trends Pl Sci 3:362–365

    Article  Google Scholar 

  • Mopper S (1996) Adaptive genetic structure in phytophagous insect populations. Trends Ecol Evol 11:235–238

    Article  CAS  PubMed  Google Scholar 

  • Nash DL, Nee M (1984) Flora de Veracruz, fasc. 41, Verbenaceae. Instituto Nacional de Investigaciones sobre Recursos Bióticos (INIREB), Xalapa

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nogués I, Peñuelas J, Lluisa J, Estiarte M, Munné-Bosch S, Sardans J, Loreto F (2012) Physiological and antioxidant responses of Erica multiflora to drought and warming through different seasons. Pl Ecol 213:649–661

    Article  Google Scholar 

  • Nunes VA, Beaumont MA, Butlin RK, Paulo OS (2011) Multiple approaches to detect outliers in genome scan for selection in ocellated lizards (Lacerate lepida) along an environmental gradient. Molec Ecol 20:193–205

    Article  Google Scholar 

  • Ocampo-Velázquez RV, Malda-Barrera GX, Suárez-Ramos G (2009) Biología reproductiva del orégano mexicano (Lippia graveolens Kunth) en tres condiciones de aprovechamiento. Agro-Ciencia (Mexico) 43:475–482

    Google Scholar 

  • Osorno-Sanchez T, Flores-Jaramillo D, Hernández-Sandoval L, Lindig-Cisneros R (2009) Management and extraction of Lippia graveolens in the arid lads of Queretaro México. Econ Bot 63:314–318

    Article  Google Scholar 

  • Osorno-Sanchez T, Torres-Ruiz A, Lindig-Cisneros R (2012) Effects of harvesting intensity on population structure of Lippia graveolens (Verbenaceae, Lamiales) in the Semidesert of Queretaro, Mexico. Afr J Agr Res 7:100–108

    Google Scholar 

  • Peñuelas J, Lluisa J (2002) Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol 155:227–237

    Article  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molec Ecol 14:689–701

    Article  CAS  Google Scholar 

  • Premoli ACY, Mathiasen P (2011) Respuestas ecofisiológicas adaptativas y plásticas en ambientes secos de montaña: Nothofagus pumilio, el árbol que acaparó los Andes australes. Ecol Austral 21:251–269

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conservation Biol 17:230–237

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molec Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rosenblum EM, Hoekstra HE, Nachman MW (2004) Adaptive reptile colour variation and the evolution of the Mc1r gene. Evolution 58:1794–1808

    CAS  PubMed  Google Scholar 

  • Rzedowski J (1983) Vegetación de México. México, Limusa, p 432

    Google Scholar 

  • Sangwan NS, Farooqui AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Pl Growth Regul 34:3–21

    Article  CAS  Google Scholar 

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molec Ecol Notes 6:569–572

    Article  Google Scholar 

  • Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732

    Article  Google Scholar 

  • Seeb LW, Waples RK, Limborg MT, Warhet KI, Pascal CE, Seeb JE (2014) Parallel signatures of selection in temporally isolated lineages of pink salmon. Molec Ecol 23:2473–2485

    Article  CAS  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Soto MA, González-Medrano F, Sánchez O (2007) Evaluación del riesgo de extinción de Lippia graveolens de acuerdo al numeral 5.7 de la NOM-059-SEMARNAT-2001. In: Sánchez O, Medellín R, Aldama A, Goettsch B, Soberón-Mainero J, Tambutti M (eds) Método de Evaluación del Riesgo de Extinción de las Especies Silvestres en México (MER). Secretaría de Medioambiente y Recursos Naturales (SEMARNAT), Instituto Nacional de Ecología (INE), Universidad Nacional Autonoma de Mexico (UNAM), Comisión para el Estudio de la Biodiversidad (CONABIO), México, pp 91–110

    Google Scholar 

  • StataCorp LP (2009) Stata/MP v 11.0 for Macintosh. College Station, Texas, USA

  • Stucki S (2014) Développement d’outils de géo-calcul haute performance pour l’identification de régions du génome potentiellement soumises à la sélection naturelle: analyse spatiale de la diversité de panels de polymorphismes nucléotidiques à haute densité (800 k) chez Bos taurus et B. indicus en Ouganda. PhD Thesis (no 6014), École Polytechnique Fédérale de Lausanne, Lausanne. doi:10.5075/epfl-thesis-6014

  • Stucki S, Joost E (2015) Samßada: User manual. Available at: http://lasig.epfl.ch/files/content/sites/lasig/files/sambada/Sambadoc-v0.5.1.pdf

  • Suárez AG, Castillo G, Chacón MI (2008) Genetic diversity and spatial genetic structure within a population of an aromatic shrub, Lippia origanoides (Verbenaceae), in the Chicamocha Canyon, northeastern Colombia. Genet Res 90:455–465

    Article  Google Scholar 

  • Thompson JD, Charpentier A, Bouguetb G, Charmassona F, Rosetb S, Buatoisa B, Vernet Ph, Gouyone Ph (2013) Evolution of a genetic polymorphism with climate change in a Mediterranean landscape. Proc Acad Nat Sci Philadelphia 110:2893–2897

    Article  CAS  Google Scholar 

  • Trindade H (2010) Molecular biology of aromatic plants and spices, a review. Flavour Frag J 25:272–281

    Article  CAS  Google Scholar 

  • Vasemägi A, Primmer CF (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Molec Ecol 14:3623–3642

    Article  Google Scholar 

  • Vilas A, Pérez-Figueroa A, Caballero A (2012) A simulation study on the performance of differetiation-based methods to detect selected loci using linked neutal markers. J Evol Biol 25:1364–1376

    Article  CAS  PubMed  Google Scholar 

  • Vivó-Escoto JA (1964) Weather and climate of Mexico and Central America. In: Wauchope R (general editor) West RC (volume editor) Handbook of Middle America Indians, Volume I Natural Environment and Early Cultures. University of Texas Press, Austin, pp 216–264

  • Wang T, Chen G, Zan Q, Wang C, Su Y-J (2012) AFLP genome scan to detect genetic structure and candidate loci under selection for local adaptation of the invasive weed Mikania micrantha. PLoS ONE 7:e41310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeh FC, Boyle T (1997) POPGENE, version 1.2 Microsoft Windows-based Software for Population Genetics Analysis. University of Alberta and Center for International Forestry Research, Alberta

Download references

Acknowledgments

This study was financially supported by CONACyT (Consejo Nacional de Ciencia y Tecnología-Mexico) through a grant awarded to L.M.C.-I. (CB-2008-01, 106389). I.G.O.-C. received a postdoctoral fellowship from CONACyT (EPVF-PNPC 2011-1). Additional thanks to Gabriel Dzib, Violeta Acosta-Arriola, Luciana Diaz-Vera and Jorge Escalante for field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz M. Calvo-Irabién.

Additional information

Handling editor: Christian Parisod.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Mendoza, C.F., Ortegón-Campos, I.G. & Calvo-Irabién, L.M. Natural selection under contrasting ecological conditions in the aromatic plant Lippia graveolens (H.B.K., Verbenaceae). Plant Syst Evol 302, 275–289 (2016). https://doi.org/10.1007/s00606-015-1261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1261-7

Keywords

Navigation