Skip to main content
Log in

TOPO6: a nuclear single-copy gene for plant phylogenetic inference

  • Short Communication
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

TOPO6, a nuclear gene-marker region of subunit B of the plant homolog of archaean topoisomerase VI, occurs as single-copy locus in the haploid genome of most plant groups. The gene consists mainly of 19 exons and 18 introns, which provide conserved primer binding sites for PCR amplification in many angiosperm families combined with variable sequence stretches that can be explored in molecular systematics. Here intron/exon structure, sequence diversity, and a set of amplification primers are described to use TOPO6 as single-copy phylogenetic marker region in a wide range of plant taxa, either through PCR amplification or hybridization-based sequence capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molec Phylogen Evol 29:417–434

    Article  Google Scholar 

  • Bates AD, Maxwell A (2005) DNA topology. Oxford Univ Press, Oxford

    Google Scholar 

  • Blaner A, Schneider J, Röser M (2014) Phylogenetic relationships in the grass family (Poaceae) based on the nuclear single copy locus topoisomerase 6 compared with chloroplast DNA. Syst Biodivers 12:111–124

    Article  Google Scholar 

  • Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 29:1180–1186

    Google Scholar 

  • Brassac J, Blattner FR (2015) Species-level phylogeny and polyploid relationships in Hordeum (Poaceae) inferred by next-generation sequencing and in silico cloning of multiple nuclear loci. Syst Biol 64:792–808

    Article  PubMed  PubMed Central  Google Scholar 

  • Brassac J, Jakob SS, Blattner FR (2012) Progenitor–derivative relationships of Hordeum polyploids (Poaceae, Triticeae) inferred from sequences of TOPO6, a nuclear low-copy gene region. PLoS ONE 7:e33808

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chamala S, García N, Godden GT, Krishnakumar V, Jordon-Thaden IE, de Smet R, Barbazuk WB, Soltis DE, Soltis PS (2015) MarkerMiner 1.0: a new application for phylogenetic marker development using angiosperm transcriptomes. Appl Pl Sci 3:1400115

    Google Scholar 

  • de Smet R, Adams KL, Vandepoele K, Van Montagu MCE, Maere S, Van de Peer Y (2013) Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci USA 110:2898–2903

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartung F, Blattner FR, Puchta H (2002) Intron gain and loss in the evolution of the conserved eukaryotic recombination machinery. Nucleic Acids Res 30:5175–5181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hochbach A, Schneider J, Röser M (2015) A multi-locus analysis of phylogenetic relationships within grass subfamily Pooideae (Poaceae) inferred from sequences of nuclear single copy gene regions compared with plastid DNA. Molec Phylogen Evol 87:14–27

    Article  Google Scholar 

  • Jakob SS, Blattner FR (2010) Two extinct diploid progenitors involved in allopolyploid formation in the Hordeum murinum (Poaceae: Triticeae) taxon complex. Molec Phylogen Evol 55:650–659

    Article  CAS  Google Scholar 

  • Jakob SS, Heibl C, Rödder D, Blattner FR (2010) Population demography influences climatic niche evolution: evidence from diploid American Hordeum species (Poaceae). Molec Ecol 19:1423–1438

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lemmon EM, Lemmon AR (2013) High-throughput genomic data in systematics and phylogenetics. Annu Rev Ecol Evol Syst 44:99–121

    Article  Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Article  Google Scholar 

  • Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ (2009) Target-enrichment strategies for next-generation sequencing. Nature Meth 7:111–118

    Article  Google Scholar 

  • McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT (2013) Application of next-generation sequencing to phylogeography and phylogenetics. Molec Phylogen Evol 66:526–538

    Article  CAS  Google Scholar 

  • Naciri Y, Linder HP (2015) Species delimitation and relationships: the dance of the seven veils. Taxon 64:3–17

    Article  Google Scholar 

  • Nickrent DL, Soltis DE (1995) A comparison of angiosperm phylogenies from nuclear 18S rDNA and rbcL sequences. Ann Missouri Bot Gard 82:208–234

    Article  Google Scholar 

  • Proost S, Van Bel M, Vaneechoutte D, Van de Peer Y, Inzé D, Mueller-Roeber B, Vanderpoele K (2014) PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res 43:D974–D981

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland

  • Weitemier K, Straub SCK, Cronn RC, Fishbein M, Schmickl R, McDonnell A, Liston A (2014) Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Appl Pl Sci 2:1400042

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wölk A, Röser M (2014) Polyploid evolution, intercontinental biogeographical relationships and morphology of the recently described African oat genus Trisetopsis (Poaceae). Taxon 63:773–788

    Article  Google Scholar 

  • Wölk A, Winterfeld G, Röser M (2015) Genome evolution in a Mediterranean species complex: phylogeny and cytogenetics of Helictotrichon (Poaceae) allopolyploids based on nuclear DNA sequences (rDNA, topoisomerase gene) and FISH. Syst Biodivers 13:326–345

    Article  Google Scholar 

  • Zimmer EA, Wen J (2012) Using nuclear gene data for plant phylogenetics: progress and prospects. Molec Phylogen Evol 65:774–785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank R. Blattner.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Funding

Parts of this study were funded by the German Research Foundation (DFG) through Grant JA1938/2.

Additional information

Handling editor: Marcus Koch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

606_2015_1259_MOESM1_ESM.txt

Supplementary material 1 Alignment of the topoisomerase VI B coding regions of 36 plant taxa (FASTA format) used to infer sequence homology and positions of potentially conserved priming sites for amplification of TOPO6 parts by PCR. The genomic sequence of A. thaliana was included to indicate positions of introns and exons. The alignment can be explored with any sequence-alignment or editor program. Primer positions (Table 1) are indicated by stretches of ‘N’ in the first line (TXT 163 kb)

606_2015_1259_MOESM2_ESM.txt

Supplementary material 2 Alignment of coding and genomic sequences of Oryza sativa, Arabidopsis thaliana, Vitis vinifera, Ricinus communis, and Malus domestica (FASTA format) used to provide information on the range of intron length variation in angiosperm taxa (TXT 107 kb)

606_2015_1259_MOESM3_ESM.pdf

Supplementary material 3 Neighbor-joining tree of 96 topoisomerase VI B sequences obtained from GeneBank to infer the occurrence of deep paralogs (PDF 4682 kb)

606_2015_1259_MOESM4_ESM.pdf

Supplementary material 4 Bayesian phylogenetic tree derived from coding regions of topoisomerase VI B sequences of diverse land plants (PDF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blattner, F.R. TOPO6: a nuclear single-copy gene for plant phylogenetic inference. Plant Syst Evol 302, 239–244 (2016). https://doi.org/10.1007/s00606-015-1259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1259-1

Keywords

Navigation