Skip to main content
Log in

Systematic significance and evolutionary dynamics of the achene twin hairs in Filago (Asteraceae, Gnaphalieae) and related genera: further evidence of morphological homoplasy

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The variation and evolutionary dynamics of the twin hairs covering the achenes of the external female florets in Filago and related genera are studied using scanning electron microscope (SEM) and a Bayesian reconstruction of ancestral character states. A molecular phylogenetic hypothesis based on sequences of ITS and ETS (nuclear ribosomal DNA) and plastid rpl32-trnL intergenic spacer regions was used as a framework to test the phylogenetic, evolutionary and taxonomic significance of this character in the study group. The phylogenetic position of three island-endemic species (F. petro-ianii, F. tyrrhenica and F. wagenitziana) is explored. Three types of twin hairs are described, which alone or combined define five different types of indumentum. The results suggest that glabrous achenes are the ancestral condition for “Filago group s.str.”, while the presence of long-clavate twin hairs on the achene represents the ancestral character state for the genus Filago. Several cases of parallelisms are detected. With regard to taxonomy, twin hairs provide additional support for the recognition of Bombycilaena and Logfia at the generic level and allow the taxonomic re-evaluation of F. lutescens subsp. atlantica and F. crocidion. Finally, the utility of a Bayesian Binary MCMC approach (using the software RASP) for evolutionary reconstruction of morphological characters is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abid R, Quaiser M (2008) Cypsela morphology of some genera in the tribe Gnaphalieae (Asteraceae) from Pakistan. Pakistan J Bot 40(2):473–485

    Google Scholar 

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second International Symposium on Information Theory. Akademial Kiado, Budapest, pp 267–281

    Google Scholar 

  • Anderberg AA (1991) Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Bot 104:5–195

    Google Scholar 

  • Andrés-Sánchez S, Galbany-Casals M, Rico E, Martínez-Ortega MM (2011a) A nomenclatural treatment for Logfia Cass. and Filago L. (Asteraceae) as newly circumscribed. Typification of several names. Taxon 60:572–576

    Google Scholar 

  • Andrés-Sánchez S, Galbany-Casals M, Rico E, Martínez-Ortega MM (2011b) Proposal to conserve the name Filago vulgaris against Gnaphalium germanicum (Filago germanica) (Asteraceae). Taxon 60:600–602

    Google Scholar 

  • Andrés-Sánchez S, Martínez-Ortega MM, Rico E (2013a) Taxonomic revision of Logfia (Asteraceae, Gnaphalieae) in the Mediterranean region. Anales Jard Bot Madrid 70(1):7–18

    Article  Google Scholar 

  • Andrés-Sánchez S, Temsch EM, Rico E, Martínez-Ortega MM (2013b) Genome size in Filago L. (Asteraceae, Gnaphalieae) and related genera: phylogenetic, evolutionary and ecological implications. Pl Syst Evol 299(2):331–345

    Article  Google Scholar 

  • Applequist WL (2012) Report of the Nomenclature Committee for Vascular Plants: 64. Taxon 61:1108–1117

    Google Scholar 

  • Bergmeier E (2010) Filago wagenitziana (Asteraceae, Gnaphalieae), a new species from western Crete, Greece. Willdenowia 40:183–188

    Article  Google Scholar 

  • Bremer K (1987) Tribal interrelationships of the Asteraceae. Cladistics 3(3):210–253

    Article  Google Scholar 

  • Bremer K, Jansen RK (1992) A new subfamily of the Asteraceae. Ann Missouri Bot Gard 79:414–415

    Article  Google Scholar 

  • Cabrera AL (1961) Observaciones sobre las Inuleae-Gnaphalieae (Compositae) de América del Sur. Bol Soc Argent Bot 9:359–386

    Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molec Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Chen LY, Chen JM, Gituru RW, Wang QF (2012) Generic phylogeny, historical biogeography and character evolution on the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evol Biol 12. http://www.biomedcentral.com/1471-2148/12/30

  • Coste H (1937) Filago, Logfia & Evax. Flore Descriptive & Illustrée de la France de la Corse & des Contrées Limitrophes. Librairie des Sciences & des Arts, Paris, pp 323–327

    Google Scholar 

  • Cunningham CW, Omland KE, Oakley TH (1998) Reconstructing ancestral character states: a critical reappraisal. TREE 13(9):361–366

    CAS  PubMed  Google Scholar 

  • Dittrich M, Rita J (1989) Filago petro-ianii, a new species from Mallorca. In: Kit Tan (ed) Plant taxonomy, phytogeography and related subjects. The Davis & Hedge Festschrift. Edinburgh University Press, Edinburgh, pp 1–9

    Google Scholar 

  • Donoghue MJ, Ree RH, Baum DA (1998) Phylogeny and the evolution of flower symmetry in the Asteridae. Trends Pl Sci 3:311–317

    Article  Google Scholar 

  • Escobar-García P, Schönswetter P, Fuertes Aguilar J, Nieto Feliner G, Schneeweiss GM (2009) Five molecular markers reveal extensive morphological homoplasy and reticulate evolution in the Malva alliance (Malvaceae). Molec Phylogenet Evol 50:226–239

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fiori A, Paoletti G (1903–1904) Evax & Filago. In: Flora Analitica d’Italia ossia descrizioni delle piante vascolari indigene inselvatichite e largamente coltivate in Italia disposte per quadri analitici, vol. 3. Tipografía del Seminario, Padova, pp 272–276

  • Freire SE, Katinas L (1995) Morphology and ontogeny of the cypsela hairs on Naussauviinae (Asteraceae, Mutisieae). In: Hind DJN, Jeffrey C, Pope GV (eds) Advances in compositae systematics. Royal Botanic Gardens, Kew, pp 107–143

    Google Scholar 

  • Galbany-Casals M, Andrés-Sánchez S, Garcia-Jacas N, Susanna A, Rico E, Martínez-Ortega MM (2010) How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the “Filago group” (Asteraceae, Gnaphalieae), with special focus on the genus Filago. Taxon 59:1671–1689

    Google Scholar 

  • Galbany-Casals M, Blanco-Moreno JM, Garcia-Jacas N, Breitwieser I, Smissen RD (2011) Genetic and morphological variation in the Mediterranean Helichrysum italicum subsp. microphyllum (Asteraceae; Gnaphalieae). Pl Biol 13:678–687

    Article  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hess R (1938) Vergleichende Untersuchungen über die Zwillingshaare der Kompositen. Bot Jahrb Syst 68:435–496

    Google Scholar 

  • Hilliard OM, Burtt BL (1981) Some generic concepts in Compositae—Gnaphaliinae. Bot J Linn Soc 82:181–232

    Article  Google Scholar 

  • Holub J (1975) Bombycilaena, Cymbolaena, Evax, Filago, Ifloga, Logfia and Micropus. In: Davis PH (ed) Flora of Turkey, vol 5. Edinburgh University Press, Edinburgh, pp 100–116

    Google Scholar 

  • Holub J (1976) Filago, Logfia & Evax. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora europaea, vol. 4. Cambridge University Press, Cambridge, London, New York, Melbourne, pp 121–125

  • Huelsenbeck P, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Karis PO, Källersjö M, Bremer K (1992) Phylogenetic analysis of the Cichorioideae (Asteraceae), with emphasis on the Mutisieae. Ann Missouri Bot Gard 79:416–427

    Article  Google Scholar 

  • Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78:454–458

  • Morefield JD (2006) Ancistrocarphus, Diaperia, Filago, Hesperevax, Logfia, Micropus, Psilocarphus, Stylocline. In: Flora of North America Editorial Committee (eds) Flora of North America North of Mexico, vol. 19. Flora of North America Association, New York, Oxford

  • Moris C (1841) Evax rotundata Moris. In: Atti Terza Ruin. Sc. Ital. 3:481

  • Muñoz-Centeno LM, Albach DC, Sánchez-Agudo JA, Martínez-Ortega MM (2006) Systematic significance of seed morphology in Veronica (Plantaginaceae): a phylogenetic perspective. Ann Bot(Oxford) 98:335–350

    Article  PubMed Central  PubMed  Google Scholar 

  • Pagel M (1997) Inferring evolutionary processes from phylogenies. Zool Scr 26:331–348

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  PubMed  Google Scholar 

  • Pérez F, Arroyo MTK, Medel R, Hershkovitz MA (2006) Ancestral reconstruction of flower morphology and pollination systems in Schizanthus (Solanaceae). Amer J Bot 93:1029–1038

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Molec Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Roque N, Keil DJ, Susanna A (2009) Illustrated glossary of Compositae. In: Funk VA, Susanna A, Stuessy T, Bayer RJ (eds) Systematics, evolution, and biogeography of the Compositae. International Association of Plant Taxonomists, Vienna, pp 781–806

    Google Scholar 

  • Smissen RD, Breitwieser I (2008) Species relationships and genetic variation in the New Zealand endemic Leucogenes (Asteraceae: Gnaphalieae). New Zealand J Bot 46:65–76

    Article  Google Scholar 

  • Smissen RD, Breitwieser I, Ward JM (2004) Phylogenetic implications of trans-specific chloroplast DNA sequence polymorphism in New Zealand Gnaphalieae (Asteraceae). Pl Syst Evol 249:37–53

    Article  CAS  Google Scholar 

  • Smoljaninova L (1959) Filagininae. In: Schischkin BK (ed) Flora of the USSR, vol 25. Science Publishers, Enfield, pp 281–303

    Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagenitz G (1965) Zur Systematik und Nomenklatur einiger Arten von Filago L. emend. Gaertn. subgen. Filago (“Filago germanica”-Gruppe). Willdenowia 4:37–59

    Google Scholar 

  • Wagenitz G (1969) Abgrenzung und Gliederung der Gattung Filago s.l. (Compositae—Inuleae). Willdenowia 5:395–444

    Google Scholar 

  • Xiang QY, Thomas DT (2008) Tracking character evolution and biogeographic history through time in Cornaceae—does choice of methods matter? J Syst Evol 46:349–374

    Google Scholar 

  • Yang Z (1996) Among-site rate variation and its impact on phyogenetic analysis. Trends Ecol Evol 11:367–372

  • Yu Y, Harris AJ, He XJ (2011) RASP (Reconstruct Ancestral State in Phylogenies) 2.0b. http://mnh.scu.edu.cn/soft/blog/RASP/. Accessed 9 Feb 2013)

  • Zharkikh A (1994) Estimation of evolutionary distances between nucleotide sequences. J Molec Evol 39:315–329

Download references

Acknowledgments

We would like to express our gratitude to the herbarium SALA for the loan of material. This work was supported by the Spanish Dirección General de Investigación Científica y Técnica through the research projects CGL2008-02982-C03-02, CGL2009-07555 and CGL2010-18631/BOS and by the Catalan government (‘Ajuts a grups consolidats’ 2009/SGR/00439). A grant to S. Andrés-Sánchez from the Spanish Dirección General de Investigación Científica y Técnica is also gratefully acknowledged. We thank Y. Ruiz from Real Jardín Botánico de Madrid for technical assistance concerning SEM and A. J. Harris for his help and advice on the use of the software RASP. Sincere thanks are given to Prof. Anderberg for providing helpful information. Finally, we thank the anonymous reviewers for their constructive remarks which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Andrés-Sánchez.

Additional information

Handling editor: Hong-Zhi Kong.

Electronic supplementary material

Appendix

Appendix

New sequences included in the molecular analyses. Species with voucher information and European Nucleotide Archive accession numbers (ITS, ETS, rpl32-trnL intergenic spacer) are included. Sequences of the other species are mentioned in Galbany-Casals et al. (2010).

Filago aegaea Wagenitz, (1) Grecia, Crete, between Asigonia and Kallikratis, Kallikratis plateau, Galbany et al., GC2169-3, SALA110232 (HG918219, HG918234, HG918249); (2) Galbany et al., GC2169-4, SALA110232 (HG918220, HG918235, HG918250); (3) Galbany et al., GC2170-2, SALA1497422 (HG918221, HG918236, HG918251); (4) Galbany et al., GC2170-4, SALA1497422 (HG918222, HG918237, HG918252). Filago petro-ianii Rita & Dittrich, (1) Spain, Majorca, between Cap Blanc and Cala Blava, Partió de S’Águila, Martínez-Ortega and Andrés-Sánchez, SA255-11, SALA139205 (HG918223, HG918238, HG918253); (2) Martínez-Ortega and Andrés-Sánchez, SA255-9, SALA139205 (HG918224, HG918239, HG918254); (3) between Palma and Algaida, Martínez-Ortega and Andrés-Sánchez, SA249-4, SALA139206 (HG918225, HG918240, HG918255); (4) Martínez-Ortega and Andrés-Sánchez, SA249-1, SALA139206 (HG918226, HG918241, HG918256). Filago tyrrhenica Chrtek & Holub, (1) Italy, Sardinia, Monte Rosso, E. Farris, s.n.-1, BC (HG918227, HG918242, HG918257); (2) E. Farris, s.n.-2, BC (HG918228, HG918243, HG918258); (3) Tempio, Pausania, Rena Majore, Navarro et al., s.n., SALA136481 (HG918229, HG918244, HG918259). Filago wagenitziana Bergmeier, (1) Greece, Crete, Grenzgebiet der Nomoi Chania und Rethimno, S Asi Gonia, Bergmeier, 10-135-1, Herb. Bergmeier (HG918230, HG918245, HG918260); (2) Bergmeier, 10-135-2, Herb. Bergmeier (HG918231, HG918246, HG918261); (3) Bergmeier, 10-136-1, Herb. Bergmeier (HG918232, HG918247, HG918262); (4) Bergmeier, 10-136-2, Herb. Bergmeier (HG918233, HG918248, HG918263)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrés-Sánchez, S., Galbany-Casals, M., Bergmeier, E. et al. Systematic significance and evolutionary dynamics of the achene twin hairs in Filago (Asteraceae, Gnaphalieae) and related genera: further evidence of morphological homoplasy. Plant Syst Evol 301, 1653–1668 (2015). https://doi.org/10.1007/s00606-014-1185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1185-7

Keywords

Navigation