Skip to main content
Log in

Floral structure in Acrocomia aculeata (Arecaceae): evolutionary and ecological aspects

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Acrocomia aculeata is an oleaginous palm widely distributed through the tropical and subtropical Americas that shows significant potential for agroindustrial use. Studies of floral structures can contribute to our knowledge of the evolutionary diversification of this genus and ecological aspects of its species as well as assist management and domestication programs. With the objective of characterizing the morphoanatomy of the flowers of A. aculeata, 20 inflorescences were collected in each of three natural populations growing in the northern region of Minas Gerais State, Brazil. Flowers at anthesis were evaluated biometrically and using standard plant anatomical procedures, and observed under light and scanning electron microscopy. The flowers showed wide biometric variability that was influenced by the collection area, the individuals examined, and the positions of the flowers on the inflorescence. Staminate flowers can have two whorls of petals, small anthers, and vestigial structures, with the development of an infertile carpel and rudimentary ovules. Defenses against herbivory include the presence of raphides in the anthers and pistillate flowers, fiber bundles, stegmata, and idioblasts containing phenols and raphides. Pollinators are attracted by the liberation of intense odors produced by osmophores located in the corolla, with pollen being the principal resource offered. Phenotypic plasticity, the structures involved in defending against herbivores and attracting pollinators, the numbers of flowers, and flowering synchrony contribute to the reproductive success of this species. The short period during which the stigmas remain receptive determines synchronous fertilization within the inflorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adam H, Jouannic S, Escoute J, Duval Y, Verdeil J, Tregear JW (2005) Reproductive developmental complexity in the African oil palm (Elaeis guineensis, Arecaceae). Amer J Bot 92:1836–1852

    Article  Google Scholar 

  • Adam H, Jouannic S, Morcillo F, Verdeil J, Duval Y, Tregear JW (2007a) Determination of flower structure in Elaeis guineensis: do palms use the same homeotic genes as other species? Ann Bot (Oxford) 100:1–12

    Article  CAS  Google Scholar 

  • Adam H, Jouannic S, Orieux Y, Morcillo F, Richaud F, Duval Y, Tregear JW (2007b) Functional characterization of MADS box genes involved in the determination of oil palm flower structure. J Exp Bot 58:1245–1259

    Article  CAS  PubMed  Google Scholar 

  • Adam H, Collin M, Richaud F, Beulé T, Cros D, Omoré A, Nodichao L, Nouy B, Tregear JW (2011) Environmental regulation of sex determination in oil palm: current knowledge and insights from other species. Ann Bot (Oxford) 108:1529–1537

    Article  CAS  Google Scholar 

  • Antoń S, Kamińska M, Stpiczyńska M (2012) Comparative structure of the osmophores in the flowers of Stanhopeagraveolens Lindley and Cycnocheschlorochilon Klotzsch (Orchidaceae). Acta Agrobot 65:11–22

    Article  Google Scholar 

  • Ascensão L, Francisco A, Cotrim H, Pais MS (2005) Comparative structure of the labellum in Ophrysfuscaand O. lutea (Orchidaceae). Amer J Bot 92:1059–1067

    Article  Google Scholar 

  • Askgaard A, Stauffer FW, Hodel DR, Barfod AS (2008) Floral structure in the neotropical palm genus Chamaedorea (Arecoideae, Arecaceae). Anales Jard Bot Madrid 65:197–210

    Google Scholar 

  • Baker WJ, Norup MV, Clarkson JJ, Couvreur TLP, Dowe JL, Lewis CE, Pintaud JC, Savolainen V, Wilmot T, Chase MW (2011) Phylogenetic relationships among arecoid palms (Arecaceae: arecoideae). Ann Bot (Oxford) 108:1417–1432

    Article  CAS  Google Scholar 

  • Barfod AS, Hagen M, Borchsenius F (2011) Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Ann Bot (Oxford) 108:1503–1516

    Article  Google Scholar 

  • Beulé T, Camps C, Debiesse S, Tranchant C, Dussert S, Sabau X, Jaligot E, Alwee SSRS, Tregear JW (2011) Transcriptome analysis reveals differentially expressed genes associated with the mantled homeotic flowering abnormality in oil palm (Elaeis guineensis). Tree Genet Genomes 7:169–182

    Article  Google Scholar 

  • Caissard JC, Meekijjironenroj A, Baudino S, Anstett MC (2004) Localization of production and emission of pollinator attractant on whole leaves of Chamaerops humilis (Arecaceae). Amer J Bot 91:1190–1199

    Article  Google Scholar 

  • Clement CR, Lleras Pérez E, van Leeuwen J (2005) O potencial das palmeiras tropicais no Brasil: acertos e fracassos das últimas décadas. Agrociencias 9:67–71

    Google Scholar 

  • Daher A, Adam H, Chabrillange N, Collin M, Mohamed N, Tregear JW, Aberlenc-Bertossi F (2010) Cell cycle arrest characterizes the transition from a bisexual floral bud to a unisexual flower in Phoenix dactylifera. Ann Bot (Oxford) 106:255–266

    Article  CAS  Google Scholar 

  • David R, Carde JP (1964) Coloration différentielle des inclusions lipidique et terpeniques des pseudophylles du pine maritime au moyen du reactif Nadi. Compt Rend Hebd Séances Acad Sci Ser D 258:1338–1340

    CAS  Google Scholar 

  • Dransfield J, Uhl NW, Asmussen CBA, Baker WJ, Harley MM, Lewis CE (2008) Genera palmarum: the evolution and classification of palms. Kew Publishing, Kew

    Google Scholar 

  • Ervik F, Barfod A (1999) Thermogenesis in palm inflorescence and its ecological significance. Acta Bot Venez 22:195–212

    Google Scholar 

  • Genovese-Marcomini PR, Mendonça MS, Carmello-Guerreiro SM (2013) Morphoanatomy of the flower of Syagrus inajai (SPRUCE) Becc. (Arecaceae- Arecoideae- Attaleinae) Amazon. Brazil J Biol 73:649–661

    Article  CAS  Google Scholar 

  • Govaerts R, Dransfield J, Zona S, Hodel DR, Henderson A (2014) World Checklist of Arecaceae. Facilitated by the Royal Botanic Gardens, Kew. Available at: http://www.apps.kew.org/wcsp

  • Henderson A, Rodríguez D (1999) Raphides in palm anthers. Acta Bot Venez 22:45–55

    Google Scholar 

  • Henderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princeton University Press, New Jersey

    Google Scholar 

  • Hiane PA, Filho MMR, Ramos MIL, Macedo MLR (2005) Bocaiúva, Acrocomia aculeata (Jacq.) Lodd., pulp and kernel oils: characterization and fatty acid composition. Brazil J Food Technol 8:256–259

    CAS  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry: principles and practice. W. R. Freeman, San Francisco

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. MacGraw-Hill, New York

    Google Scholar 

  • Kirk PW Jr (1970) Neutral red as a lipid fluorochrome. Stain Technol 45:1–4

    CAS  PubMed  Google Scholar 

  • Küchmeister H, Silberbauer-Gottsberger I, Gottsberger G (1997) Flowering, pollination, nectar standing crop, and nectaries of Euterpe precatoria (Arecaceae), an Amazonia rain forest palm. Pl Syst Evol 206:71–97

    Article  Google Scholar 

  • Küchmeister H, Webber AC, Silberbauer-Gottsberger I, Gottsberger G (1998) A polinização e sua relação com a termogênese em espécies de Arecaceae e Annonaceae da Amazônia Central. Acta Amazonica 28:217–245

    Google Scholar 

  • Loo AHB, Dransfield J, Chase MW, Baker W (2006) Low-copy nuclear DNA, phylogeny and the evolution of dichogamy in the betel nut palms and their relatives (Arecinae; Arecaceae). Molec Phylogenet Evol 39:598–618

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi H, Noblick L, Kahn F, Ferreira E (2010) Flora brasileira: Arecaceae (Palmeiras). Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Manfio CE, Resende MDV, Santos CEM, Motoike SY, Lanza MA, Paes JMV (2011) Melhoramento genético da macaúba. Inf Agropec 32:32–40

    Google Scholar 

  • Melo MC, Borba EL, Paiva EAS (2010) Morphological and histological characterization of the osmophores and nectaries of four species of Acianthera (Orchidaceae: pleurothallidinae). Pl Syst Evol 286:141–151

    Article  Google Scholar 

  • Mercadante-Simões MO, Paiva EAS (2013) Leaf colleters in Tontelea micrantha (Celastraceae, Salacioideae): ecological, morphological and structural aspects. Compt Rend Biol 336:400–406

    Article  Google Scholar 

  • Mercadante-Simões MO, Fonseca RS, Ribeiro LM, Nunes YRF (2006) Biologia reprodutiva de Butia capitata (Mart.) Beccari (Arecaceae) em uma área de cerrado no norte de Minas Gerais. Unimontes Cient 8:143–149

    Google Scholar 

  • Metcalfe CR, Chalk L (1989) Anatomy of the dicotyledons. Clarendon Press, Oxford

    Google Scholar 

  • Moore HE Jr, Uhl NW (1982) Major trends of evolutions in palms. Bot Rev (Lancaster) 48:1–69

    Article  Google Scholar 

  • Moura EF, Ventrella MC, Motoike SY (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Sci Agric 67:375–495

    Article  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure principles and select methods. Termarcarphi Pty, Melbourne

    Google Scholar 

  • Oliveira MSP, Couturier G, Beserra P (2003) Biologia da polinização da palmeira tucumã (Astrocaryum vulgare Mart.) em Belém, Pará Brasil. Acta Bot Bras 17:343–353

    Google Scholar 

  • Oliveira DA, MeloJúnior AF, Brandão MM, Rodrigues LA, Menezes EV, Ferreira PRB (2012) Genetic diversity in populations of Acrocomia aculeata (Arecaceae) in the northern region of Minas Gerais, Brazil. Genet Molec Res 11:531–538

    Article  CAS  Google Scholar 

  • Paiva EAS (2012) Colleters in Cariniana estrellensis (Lecythidaceae): structure, secretion and evidences for young leaf protection. J Torrey Bot Soc 139:1–8

    Article  Google Scholar 

  • Paiva EAS, Pinho SZ, Oliveira DMT (2011) Large plant samples: how to process for GMA embedding? In: Chiarini-Garcia H, Melo RCN (eds) Light microscopy: methods and protocols, 1st edn. Humana Press, Totowa, pp 37–49

    Chapter  Google Scholar 

  • Pearse AGE (1980) Histochemistry theoretical and applied. Longman Group Limited, Baltimore

  • Perera PIP, Hocher V, Weerakoon LK, Yakandawala DMD, Fernando SC, Verdeil JL (2010) Early inflorescence and floral development in Cocos nucifera L. (Arecaceae: arecoideae). S African J Bot 76:482–492

    Article  Google Scholar 

  • Pimentel LD, Dias LAS, Paes JMV, Sato AY, Motoike SY (2011) Diversidade no gênero Acrocomia e proposta de subdivisão da espécie Acrocomia aculeata. Inf Agropec 32:81–87

    Google Scholar 

  • Pires TP, Souza ES, Kuki KN, Motoike SY (2013) Ecophysiological traits of the macaw palm: a contribution towards the domestication of a novel oil crop. Industr Crop Prod 44:200–210

    Article  CAS  Google Scholar 

  • Plachno BJ, Swiatek P, Szymczak G (2010) Can a stench be beautiful? Osmophores in stem-succulent stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae-Stapeliinae). Flora 205:101–105

    Article  Google Scholar 

  • Reis SB, Mercadante-Simões MO, Ribeiro LM (2012) Pericarp development in the macaw palm Acrocomia aculeata (Arecaceae). Rodriguésia 63:541–549

    Article  Google Scholar 

  • Ribeiro LM, Souza PP, Rodrigues AG Jr, Oliveira TGS, Garcia QS (2011) Overcoming dormancy in macaw palm diaspores, a tropical species with potential for use as bio-fuel. Seed Sci Technol 39:303–317

    Article  Google Scholar 

  • Robards AW (1978) An introduction to techniques for scanning electron microscopy of plant cells. In: Hall JL (ed) Electron microscopy and cytochemistry of plant cells. Elsevier, New York, pp 343–403

    Google Scholar 

  • Rudall PJ, Abranson K, Dransfield J, Baker W (2003) Floral anatomy in Dypsis (Arecaceae-Areceae): a case of complex synorganization and stamen reduction. Bot J Linn Soc 143:115–133

    Article  Google Scholar 

  • Sanchez AM, Bosch M, Bots M, Nieuwland J, Feron R, Mariani C (2004) Pistil factors controlling pollination. Pl Cell 16:98–106

    Article  Google Scholar 

  • Scariot AO, Lleras E, Hay JD (1991) Reproductive biology of the palm Acrocomia aculeata in Central Brazil. Biotropica 23:12–22

    Article  Google Scholar 

  • Stauffer FW, Endress PK (2003) Comparative morphology of female flowers and systematics in Geonomeae (Arecaceae). Pl Syst Evol 242:171–203

    Article  Google Scholar 

  • Stauffer FW, Baker WJ, Dransfield J, Endress PK (2004) Comparative floral structure and systematics of Pelagodoxa and Sommieria (Arecaceae). Bot J Linn Soc 146:27–39

    Article  Google Scholar 

  • Stpiczyńska M (1993) Anatomy and ultrastructure of osmophores of Cymbidium tracyanum Rolfe (Orchidaceae). Acta Soc Bot Pol 62:5–9

    Article  Google Scholar 

  • Uhl NW (1966) Morphology and anatomy of the inflorescence axis and flowers of a new palm, Aristeyera spicata. J Arnold Arbor 47:9–22

    Google Scholar 

  • Uhl NW (1976) Developmental studies in Ptychosperma (Palmae). I. The inflorescence and flower cluster. Amer J Bot 63:82–96

    Article  Google Scholar 

  • Uhl NW, Dransfield J (1987) Genera Palmarum: a classification of palms based on the work of Moore Jr. HE, Bailey Hortorium LH, The International Palm Society, Lawrence

  • Uhl NW, Moore HE Jr (1971) The palm gynoecium. Amer J Bot 58:945–992

    Article  Google Scholar 

  • Uhl NW, Moore HE Jr (1973) The protection of pollen and ovules in palms. Principes 17:111–149

    Google Scholar 

  • Uhl NW, Moore HE Jr (1977) Correlations of inflorescence, flower structure, and floral anatomy with pollination in some palms. Biotropica 9:170–190

    Article  Google Scholar 

  • Voeks RA (2002) Reproductive ecology of the piassava palm (Attalea funifera) of Bahia Brazil. J Trop Ecol 18:121–136

    Article  Google Scholar 

  • Von Teichman I, Van Wyk AE (1991) Trends in the evolution of dicotyledonous seeds based on character associations, with special reference to pachychalazy and recalcitrance. Bot J Linn Soc 105:211–237

    Article  Google Scholar 

  • Werker E (1997) Seed anatomy. Gebrüder Borntraeger Handbuch der Pflanzenanatomie, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Petrobras for the research grant awarded to the first author and for financially supporting this project; the Fundação de Amparo a Pesquisa do Estado de Minas Gerais for its financial support (CRA APQ 01043/11) used, in part, in the photographic documentation of this project, and for the BIPDT grants to L.M. Ribeiro and M.O. Mercadante-Simões; the Núcleo de Microscopia e Microanálise da Universidade Federal de Viçosa (Dra. Aristéa Alves Azevedo and Gilmar Edilberto Valente - NMM/UFV) and the Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (Dr. Francisco André Ossamu Tanaka - NAP/MEPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo M. Ribeiro.

Additional information

Handling editor: Louis P. Ronse De Craene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzottini-dos-Santos, H.C., Ribeiro, L.M., Mercadante-Simões, M.O. et al. Floral structure in Acrocomia aculeata (Arecaceae): evolutionary and ecological aspects. Plant Syst Evol 301, 1425–1440 (2015). https://doi.org/10.1007/s00606-014-1167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1167-9

Keywords

Navigation