Skip to main content
Log in

ITS rDNA sequence comparisons resolve phylogenetic relationships in Orostachys subsection Appendiculatae (Crassulaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Orostachys (Crassulaceae) is a small genus of succulent plants having a predominantly East Asian distribution. Recent DNA sequence comparisons revealed polyphyletic nature of the genus and found distant relationship between its infrageneric taxa. Here we present the first molecular phylogeny of Orostachys subsection Appendiculatae based on a large number of ITS rDNA sequences representing most currently recognized members of the subsection and utilizing secondary structure information. Ribosomal spacer was a highly informative marker and provided a phylogenetic signal sufficient to resolve relationships at different scales, from affinities between species to a fine geographic structure in broadly sampled species. It was also conservative enough to allow unambiguous alignment and construction of consensus secondary structure models for ITS1 and ITS2. These models displayed a number of molecular synapomorphies defining most lineages established in our analyses. We revealed a major split in the subsection placing three species, O. spinosa, O. japonica and O. chanetii, into a strongly supported clade to the exclusion of O. thyrsiflora. Phenotypically distinct monotypic genus Meterostachys was also resolved as a part of the subsection’s clade and showed affinity to O. thyrsiflora. Our data suggested that morphology-based species concept for O. thyrsiflora requires reassessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey CD, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molec Phylogenet Evol 29(3):435–455

    Article  CAS  PubMed  Google Scholar 

  • Bezdeleva TA (1995) Crassulaceae. In: Kharkevicz SS (ed) Plantae vasculares Orientis Extremi Sovietici, vol 7. Nauka, Sankt Petersburg, pp 214–235

    Google Scholar 

  • Bonfield JK, Smith KF, Staden R (1995) A new DNA sequence assembly program. Nucl Acids Res 23:4992–4999

    Article  CAS  Google Scholar 

  • Borissova AG (1939) Crassulaceae. In: Komarov VL (ed) Flora of USSR. Academiae Scientiarum URSS, Leningrad 9:8–134, 471–486

  • Byalt VV (1997) Meterostachys sikokiana (Crassulaceae), a new species and genus in the flora of China. Bot Zhurn (Moscow & Leningrad) 82(7):128–130

    Google Scholar 

  • Byalt VV (1999) Monograph of the genus Orostachys Fisch. (Crassulaceae). Dissertation, Botanical Institute, Russian Academy of Sciences

  • Byalt VV (2000) Conspectus generis Orostachys Fisch. (Crassulaceae). Novosti Sist Vyssh Rast 32:40–50

    Google Scholar 

  • Caisová L, Marin B, Sausen N, Pröschold T, Melkonian M (2011) Polyphyly of Chaetophora and Stigeolonium within the Chaetophorales (Chlorophyceae), revealed by sequence comparisons of nuclear-endoced SSU rRNA genes. J Phycol 47:164–177

    Article  Google Scholar 

  • Calonje M, Martin-Bravo S, Dobes C et al (2009) Non-coding nuclear DNA markers in phylogenetic reconstruction. Pl Syst Evol 282(3–4):257–280

    Article  CAS  Google Scholar 

  • Carrillo-Reyes P, Sosa V, Mort ME (2009) Molecular phylogeny of the Acre clade (Crassulaceae): dealing with the lack of definitions for Echeveria and Sedum. Molec Phylogenet Evol 53(1):267–276

    Article  PubMed  Google Scholar 

  • Chen X, Liao B, Song J, Pang X, Han J, Chen S (2012) A fast SNP identification and analysis of intraspecific variation in the medicinal Panax species based on DNA barcoding. Gene 530(1):39–43

    Article  Google Scholar 

  • Darriba D, Taboada G, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9:772

    Article  CAS  Google Scholar 

  • Denduangboripant J, Cronk QC (2000) High intraindividual variation in internal transcribed spacer sequences in Aeschynanthus (Gesneriaceae): implications for phylogenetics. Proc R Soc Lond B 267(1451):1407–1415

    Article  CAS  Google Scholar 

  • Eggli U, ‘t Hart H, Nyffeler R (1995) Towards a consensus classification of the Crassulaceae. In: Eggli U (ed) Evolution and systematics of the Crassulaceae. Backhuys, Leiden, pp 173–192

    Google Scholar 

  • Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Molec Biol Evol 2:399–410

    CAS  PubMed  Google Scholar 

  • Fairfield KN, Mort ME, Santos-Guerra A (2004) Phylogenetics and evolution of the Macaronesian members of the genus Aichryson (Crassulaceae) inferred from nuclear and chloroplast sequence data. Pl Syst Evol 248:71–83

    Article  CAS  Google Scholar 

  • Feliner GN, Rossello JA (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molec Phylogenet Evol 44(2):911–919

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fu KJ, Ohba H (2001) Crassulaceae. In: Wu ZY, Raven PH (eds) Flora of China. Science Press, Beijing, Missouri Botanical Garden Press, St. Louis, 8:202–268

  • Galtier N, Gouy M, Gautier C (1996) Seaview and phylo-win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    CAS  PubMed  Google Scholar 

  • Gehrig H, Gaubmann O, Marx H, Schwarzrott D, Kluge M (2001) Molecular phylogeny of the genus Kalanchoe (Crassulaceae) inferred from nucleotide sequences of the ITS–1 and ITS–2 regions. Pl Sci 160:827–835

    Article  CAS  Google Scholar 

  • Gontcharova SB (2006) Sedoideae, Crassulaceae of the Russian Far East flora. Dalnauka, Vladivostok

    Google Scholar 

  • Gontcharova SB, Gontcharov AA (2004) Sequence and secondary structure evolution of ITS rDNA in the family Crassulaceae. Chromosome Sci 8:142–144

    Google Scholar 

  • Gontcharova SB, Gontcharov AA (2009) Molecular phylogeny and systematics of flowering plants of the family Crassulaceae DC. Molec Biol 43:794–803

    Article  CAS  Google Scholar 

  • Gontcharova SB, Artyukova EV, Gontcharov AA (2006) Phylogenetic relationships among members of the subfamily Sedoideae (Crassulaceae) inferred from the ITS region sequences of nuclear rDNA. Russ J Genet 42:654–661

    Article  CAS  Google Scholar 

  • Gontcharova SB, Gontcharov AA, Stephenson R (2008) Analysis of phylogenetic relationships in the family Crassulaceae based on nucleotide sequences of ITS region of nuclear rDNA. Bot Zhurn (Moscow & Leningrad) 93:96–113

    Google Scholar 

  • Huelsenbeck JP, Ronoquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen TH, Frydenberg J (1999) Diversification in insular plants: inferring the phylogenetic relationship in Aeonium (Crassulaceae) using ITS sequences of nuclear ribosomal DNA. Nordic J Bot 19(5):613–621

    Article  Google Scholar 

  • Jorgensen TH, Olesen JM (2001) Adaptive radiation of island plants: evidence from Aeonium (Crassulaceae) of the Canary Islands. Bot J Linn Soc 132:223–240

    Article  Google Scholar 

  • Jung HJ, Choi J, Nam JH, Park HJ (2007) Anti-ulcerogenic effects of the flavonoid-rich fraction from the extract of Orostachys japonicus in mice. J Med Food 10(4):702–706

    Article  CAS  PubMed  Google Scholar 

  • Kozyrenko MM, Gontcharova SB, Gontcharov AA (2013) Phylogenetic relationships among Orostachys subsection Orostachys species (Crassulaceae) based on nuclear and chloroplast DNA data. J Syst Evol 51(5):578–589

    Article  Google Scholar 

  • Krasnov EA, Saratikov AC, Surov YP (1979) Plants of the family Crassulaceae. Tomsk University, Tomsk

    Google Scholar 

  • Lee JH, Lee SJ, Park S et al (2011) Characterisation of flavonoids in Orostachys japonicus A. Berger using HPLC-MS/MS: contribution to the overall antioxidant effect. Food Chem 124:1627–1633

    Article  CAS  Google Scholar 

  • Lee GS, Lee HS, Kim SH et al (2014) Anti-cancer activity of the ethylacetate fraction from Orostachys japonicus for modulation of the signaling pathway in HepG2 human hepatoma cells. Food Sci Biotechnol 23(1):269–275

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Marin B, Palm A, Klingberg M, Melkonian M (2003) Phylogeny and taxonomic revision of plastid-containing euglenophytes based on ssu rDNA sequence comparisons and synapomorphic signatures in the ssu rRNA secondary structure. Protist 154:99–145

    Article  CAS  PubMed  Google Scholar 

  • Matyasek R, Renny-Byfield S, Fulnecek J et al (2012) Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genom 13:722

    Article  CAS  Google Scholar 

  • Mayuzumi S, Ohba H (2004) The phylogenetic position of East Asian Sedoideae (Crassulaceae) inferred from chloroplast and nuclear DNA sequences. Syst Bot 29:587–598

    Article  Google Scholar 

  • Mort ME, Soltis DE, Soltis PS, Francisco-Ortega J, Santos-Guerra A (2002) Phylogenetics and evolution of the Macaronesian clade of Crassulaceae inferred from nuclear and chloroplast sequence data. Syst Bot 27:271–288

    Google Scholar 

  • Mort ME, LevsenN Randle CP, Jaarsveld EV, Palmer A (2005) Phylogenetics and diversification of Cotyledon (Crassulaceae) inferred from nuclear and chloroplast DNA sequence data. Am J Bot 92(7):1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Ohba H (1978) Generic and infrageneric classification of the Old World Sedoideae (Crassulaceae). J Fac Sci U Tokyo III 12:139–198

    Google Scholar 

  • Ohba H (1990) Notes towards a monograph of the genus Orostachys (Crassulaceae) (1). J Jap Bot 65:193–203

    Google Scholar 

  • Ohba H (2001) Crassulaceae. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan, vol 2b. Kodasha, Tokyo, pp 10–31

    Google Scholar 

  • Ohba H (2005) Orostachys. In: Eggli U (ed) Illustrated handbook of succulent plants: Crassulaceae. Springer, Berlin, pp 135–142

    Google Scholar 

  • Ohwi J (1953) Crassulaceae. Flora of Japan. Shibundo, Tokyo, pp 585–592

    Google Scholar 

  • Peng YY, Baum BR, Ren CZ et al (2010) The evolution pattern of rDNA ITS in Avena and phylogenetic relationship of the Avena species (Poaceae: Aveneae). Hereditas 147(5):183–204

    Article  PubMed  Google Scholar 

  • Poczai P, Hyvönen J (2010) Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Molec Biol Rep 37(4):1897–1912

    Article  CAS  Google Scholar 

  • Ryu DS, Baek GO, Kim EY, Kim KH, Lee DS (2010) Effects of polysaccharides derived from Orostachys japonicus on induction of cell cycle arrest and apoptotic cell death in human colon cancer cells. BMB Rep 43(11):750–755

    Article  CAS  PubMed  Google Scholar 

  • Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M (2006) 4SALE—a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinform 7:498

    Article  Google Scholar 

  • Simon UK, Trajanoski S, Kroneis T, Sedlmayr P, Guelly C, Guttenberger H (2012) Accession-specific haplotypes of the internal transcribed spacer region in Arabidopsis thaliana-a means for barcoding populations. Molec Biol Evol 29(9):2231–2239

    Article  CAS  PubMed  Google Scholar 

  • Song J, Shi L, Li D, Sun Y, Niu Y et al (2012) Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA. PLoS One 7(8):e43971. doi:10.1371/journal.pone.0043971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sung SH, Jung WJ, Kim YC (2002) A novel flavonol lyxoside of Orostachys japonicus herb. Nat Prod Lett 16(1):29–32

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP* Phylogenetic analysis using parsimony (and other methods). Beta version 10. Sinauer Associates, Sunderland

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Telford MJ (2002) Cladistic analyses of molecular characters: the good, the bad and the ugly. Contr Zool 71(1–3):93–100

    Google Scholar 

  • Thiede J, Eggli U (2007) Crassulaceae DC. In: Kubitzki K (ed) The families and genera of vascular plants. Springer, Berlin, pp 83–118

    Google Scholar 

  • Vegetative resources of the USSR (1990) Flowering plants, their chemical composition, use. Families Caprifoliaceae–Plantaginaceae. Nauka, Leningrad

  • Wen J, Zimmer EA (1996) Phylogeny of Panax L. (the Ginseng Genus, Araliaceae): inference from ITS sequences of nuclear ribosomal DNA. Molec Phylogenet Evol 5:167–177

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplifcation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Chapter  Google Scholar 

  • Xiao LQ, Möller M, Zhu H (2010) High nrDNA ITS polymorphism in the ancient extant seed plant Cycas: incomplete concerted evolution and the origin of pseudogenes. Molec Phylogenet Evol 55(1):168–177

    Article  CAS  PubMed  Google Scholar 

  • Yoon NY, Min BS, Lee HK et al (2005) A potent anti-complementary acylated sterol glucoside from Orostachys japonicus. Arch Pharm Res 28(8):892–896

    Article  CAS  PubMed  Google Scholar 

  • Yost JM, Bontrager M, McCabe SW et al (2013) Phylogenetic relationships and evolution in Dudleya (Crassulaceae). Syst Botany 38(4):1096–1104

    Article  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31:3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shamil Abdullin, Viktor Bogatov, Roman Dudkin, Konstantin Kiselev, Yuri Ovchinnikov and Valentin Yakubov for sampling natural populations of O. spinosa; Marko Doboš for sharing his persona Orostachys collection and Sun Yan for assistance in sampling in Northern China. This study was supported by a RFBR grant (12-04-01379-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Gontcharov.

Additional information

Handling editor: Mark Mort.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikulin, A.Y., Nikulin, V.Y., Gonctharova, S.B. et al. ITS rDNA sequence comparisons resolve phylogenetic relationships in Orostachys subsection Appendiculatae (Crassulaceae). Plant Syst Evol 301, 1441–1453 (2015). https://doi.org/10.1007/s00606-014-1165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1165-y

Keywords

Navigation