Skip to main content
Log in

Towards a better understanding of the Taraxacum evolution (Compositae–Cichorieae) on the basis of nrDNA of sexually reproducing species

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genus Taraxacum is characterized by prevailing complex multiple hybridity, frequent polyploidy and widespread agamospermous reproduction, which makes the phylogenetic analysis difficult. On the basis of the previous analysis of the variation of nrDNA in Taraxacum taxa with different ploidy levels and modes of reproduction, to mitigate consequences of the reticulate complexity of the genus, a phylogenetic study of 52 samples of sexually reproducing dandelions of 26 sections (and another 13 agamospermous representatives of other sections known to include sexuals) was carried out. Both sexual and agamospermous samples were analysed using maximum parsimony and neighbour network. Exclusively sexual dandelions were analysed using the same approaches. In spite of the general agreement among various types of analyses, there is a limited overall congruence between results of nrDNA analyses and the established taxonomic system of the genus Taraxacum. The analyses shed light on the relationships among the most primitive groups. A stable clade is formed by representatives of the sections Primigenia, Orientalia, Sonchidium, Piesis and T. cylleneum. Another case of stable relationships is that of the members of the sect. Dioszegia. Relationships between the sects. Erythrosperma and Erythrocarpa were supported, and the relatedness of the members of sect. Australasica was confirmed. Rather unexpectedly, the agamospermous samples of the sect. Oligantha (T. minutilobum) are shown to be closely related with the sect. Macrocornuta. The latter section is generally considered to be close to sect. Ceratoidea (T. koksaghyz) on morphological grounds but this presumption is not corroborated by the results of nrDNA analyses. Analyses of 72 samples of sexual dandelions were also performed using the trnL–trnF region of the chloroplast DNA. The maximum parsimony analysis of this region reveals intraspecific variation in a number of ancestral diploid sexual species, all present in the two main branches of the cladogram. This phenomenon is attributed to the ancient gene flow and possibly to the persistence of ancestral cpDNA polymorphism. The strict consensus cpDNA tree information content and interpretability is quite low. The maximum parsimony analysis of combined nrDNA and cpDNA data sets was also performed with expectably low interpretability of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molec Biol Evol 16(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Bremer K (1994) Asteraceae: Cladistics and classification. Timber Press, Portland

    Google Scholar 

  • Brock TM (2004) The potential for genetic assimilation of a native dandelion species, Taraxacum ceratophorum (Asteraceae), by the exotic congener T. officinale. Amer J Bot 91:656–663

    Article  Google Scholar 

  • Collier MH, Rogstad SH (2004) Clonal variation in floral stage timing in the common dandelion taraxacum officinale (Asteraceae). Amer J Bot 91:1828–1833

    Article  Google Scholar 

  • Croon R, Cedroni M, Haselkorn T, Grover C, Wendel JF (2002) PCR-mediated recombination in amplification products derived from polyploid cotton. Theor Appl Gen 104:482–489

    Article  Google Scholar 

  • den Nijs JCM, Kirschner J, Štěpánek J, van der Hulst A (1990) Distribution of diploid sexual plants of Taraxacum sect. Ruderalia in east-Central Europe, with special reference to Czechoslovakia. Pl Syst Evol 170:71–84

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Engelskjøn T (1979) Chromosome numbers in vascular plants from Norway, including Svalbard. Opera Bot 52:1–38

    Google Scholar 

  • Falque M, Keurentjes J, Bakx-Schotman JMT, van Dijk PJ (1998) Development and characterization of microsatellite markers in the sexual-apomictic complex Taraxacum officinale (dandelion). Theor Appl Gen 97:283–292

    Article  CAS  Google Scholar 

  • Fürnkranz D (1964) Taraxacum apenninum-ein altes element mediterraner Gebirge. Österr Bot Z 111:231–239

    Article  Google Scholar 

  • Fürnkranz D (1967) Taraxacum apenninum-Taraxacum glaciale, ein 130 Jahre altes nomenklatorisches problem. Österr Bot Z 114:234–239

    Article  Google Scholar 

  • Fürnkranz D (1969) Eine neue mediterrane Reliktart der Gattung Taraxacum. Österr Bot Z 117:149–156

    Article  Google Scholar 

  • Ge XJ, Kirschner J, Štěpánek J (2011) Taraxacum F. H. Wiggers. In: Wu ZY, Raven PH and Hong DY (eds) Flora of China 20-21. Missouri Botanical Garden Press, St. Louis and Science Press, Beijing, pp 270–325

  • Gonzáles-Rodrígues A, Bain JF, Golden JL, Oyama K (2004) Chloroplast DNA variation in the Quercus affinisQ. laurina complex in Mexico: geographical structure and associations with nuclear and morphological variation. Mol Ecol 13:3467–3476

    Article  Google Scholar 

  • Golden JL, Bain JF (2000) Phylogeographic patterns and high levels of chloroplast DNA diversity in four Packera (Asteraceae) species in southwestern Alberta. Evolution 54:1566–1579

  • Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Handel-Mazzetti H (1907) Monographie der Gattung Taraxacum. Franz Deuticke, Leipzig and Wien

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–538

    PubMed  Google Scholar 

  • Hughes J, Richards AJ (1988) The genetic structure of populations of sexual and asexual Taraxacum (dandelions). Heredity 60:161–171

    Article  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Keane B, Collier MH, Rogstad SH (2005) Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale). Envir Monit Assessm 105:341–357

    Article  CAS  Google Scholar 

  • Kiers AM, Mes THM, Van der Meijden R, Bachmann K (1999) Morphologically defined Cichorium (Asteraceae) species reflect lineages based on chloroplast and nuclear (ITS) DNA data. Syst Bot 24(4):645–659

    Article  Google Scholar 

  • King LM (1993) Origin of genotypic variation in North American dandelions inferred from ribosomal DNA and chloroplast DNA restriction enzyme analysis. Evolution 47:136–151

    Article  CAS  Google Scholar 

  • King RA, Ferris C (2000) Chloroplast DNA and nuclear DNA variation in the sympatric alder species, Alnus cordata (Lois.) Duby and A. glutinosa (L.) Gaertn. Biol J Linn Soc 70:147–160

    Article  Google Scholar 

  • King LM, Schaal BA (1990) Genotypic variation within asexual lineages of Taraxacum officinale. Proc Natl Acad Sci USA 87:998–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirschner J, Štěpánek J (1987) Again on the sections in Taraxacum (Cichoriaceae). Taxon 36:608–617

    Article  Google Scholar 

  • Kirschner J, Štěpánek J (1993) The genus Taraxacum in the Caucasus. 1 Introduction. 2 The section Porphyrantha. Folia Geobot Phytotax 28:295–320

    Google Scholar 

  • Kirschner J, Štěpánek J (1996) Modes of speciation and evolution of the sections in Taraxacum. Folia Geobot Phytotax 31:415–426

    Article  Google Scholar 

  • Kirschner J, Štěpánek J (1997) A nomenclatural checklist of supraspecific names in Taraxacum. Taxon 46:87–98

    Article  Google Scholar 

  • Kirschner J, Štěpánek J (1998) A revision of Taraxacum sect. Piesis (Compositae). Folia Geobot 33:391–414

    Article  Google Scholar 

  • Kirschner J, Štěpánek J (2004) New sections in Taraxacum. Folia Geobot 39:259–274

    Article  Google Scholar 

  • Kirschner J, Štěpánek J, Tichý M, Krahulcová A, Kirschnerová L, Pellar L (1994) Variation in Taraxacum bessarabicum and allied taxa of the section piesis (compositae): allozyme diversity, karyotypes and breeding behaviour. Folia Geobot Phytotax 29:61–83

    Article  Google Scholar 

  • Kirschner J, Štěpánek J, Mes THM, den Nijs JCM, Oosterveld P, Štorchová H, Kuperus P (2003) Principal features of the cpDNA evolution in Taraxacum (Asteraceae, Lactuceae): a conflict with taxonomy. Pl Syst Evol 239:231–255

    Article  CAS  Google Scholar 

  • Krahulcová A (1993) New chromosome numbers in Taraxacum with reference to SAT-chromosomes. Folia Geobot Phytotax 28:289–294

    Google Scholar 

  • Kristiansen KA, Cilieborg M, Drábková L, Jörgensen T, Petersen G, Seberg O (2005) DNA taxonomy–the riddle of Oxychloë (Juncaceae). Syst Bot 30:284–289

    Article  Google Scholar 

  • Mártonfiová L, Mártonfi P, Šuvada R (2010) Breeding behavior and its possible consequences for gene flow in Taraxacum sect. Erythrosperma (H. Lindb.) Dahlst. Pl Sp Biol 25:93–102

    Article  Google Scholar 

  • Mason-Gamer RJ, Holsinger KJ, Jansen RK (1995) Chloroplast DNA haplotype variation within and among populations of Coreopsis grandiflora (Asteraceae). Molec Biol Evol 12:371–381

    CAS  Google Scholar 

  • McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JH and Turland, NJ [eds] (2006) International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria (2005) Regnum Vegetabile 146. Gantner, Ruggell

    Google Scholar 

  • Menken SBJ, Morita T (1989) Uniclonal population structure in the pentaploid obligate agamosperm Taraxacum albidum Dahlst. Pl Sp Biol 4:29–36

    Article  Google Scholar 

  • Mes THM, Kuperus P, Kirschner J, Štěpánek J, Oosterveld P, Štorchová H, den Nijs JCM (2000) Hairpins involving both inverted and direct repeats are associated with homoplasious indels in non-coding chloroplast DNA of Taraxacum (Lactuceae: Asteraceae). Genome 43(4):634–641

    Article  CAS  PubMed  Google Scholar 

  • Mes THM, Kuperus P, Kirschner J, Štěpánek J, Štorchová H, den Nijs JCM (2002) Detection of genetically divergent clone mates in apomictic dandelions. Molec Ecol 11(2):253–265

    Article  CAS  Google Scholar 

  • Nixon KC (1999) The parsimony ratchet, a new method for rapid phylogenetic analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • Nixon KC (2002) WinClada ver. 1.00.08. Ithaca, NY, Published by the author

  • Okaura T, Harada K (2002) Phylogeographical structure revealed by chloroplast DNA variation in Japanese Beech (Fagus crenata Blume). Heredity 88:322–329

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Reisch C (2004) Molecular differentiation between coexisting species of Taraxacum sect. Erythrosperma (Asteraceae) from populations in south-east and west Germany. Bot J Linn Soc 145:109–117

    Article  Google Scholar 

  • Richards AJ (1973) The origin of Taraxacum agamospecies. Bot J Linn Soc 66:189–211

    Article  Google Scholar 

  • Roalson EH, Columbus JT, Friar EA (2001) Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of suprageneric and sectional relationships in Carex with emphasis on section Acrocystic. Syst Bot 26(2):318–341

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Yamazaki T, Iwatsubo Y (2011) Cytogeography of Taraxacum albidum (Asteraceae) in Japan. Cytologia 76:201–212

    Article  Google Scholar 

  • Soltis DE, Gitzendanner MA, Strenge DD, Soltis PS (1997) Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. Pl Syst Evol 206:353–373

    Article  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75(5):758–771

    Article  Google Scholar 

  • Štěpánek J, Kirschner J (2013) A revision of mountain species of the genus Taraxacum F. H. Wigg. (Compositae) in Corsica. Candollea 68:29–39

    Article  Google Scholar 

  • Štěpánek J, Kirschner J, Jarolímová V, Kirschnerová L (2011) Taraxacum nigricans, T. alpestre and allies in the Taraxacum sect. Alpestria: taxonomy, geography and conservation status. Preslia 83:537–564

    Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sunderland, Massachusets, Sinauer Associates

  • Trávníček P, Kirschner J, Chudáčková H, Rooks F, Štěpánek J (2013) Substantial genome size variation in Taraxacum stenocephalum (Asteraceae, Lactuceae). Folia Geobot 48:271–284

    Article  Google Scholar 

  • Uhlemann I, Kirschner J, Štěpánek J (2004) The genus Taraxacum (Asteraceae) in the Southern Hemisphere. I. The section Antarctica Handel-Mazzetti and notes on dandelions of Australasia. Folia Geobot 39:205–220

    Article  Google Scholar 

  • Uhlemann I, Ritz CM, Peñailillo P (2009) Relationships in Taraxacum section Arctica s.l. (Asteraceae, Cichorieae) and allies based on nrITS. Feddes Repert 120:35–47

    Article  Google Scholar 

  • Van der Hulst RGM, Mes THM, den Nijs JCM, Bachmann K (2000) Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Molec Ecol 9:1–8

    Article  Google Scholar 

  • Van der Hulst RGM, Mes THM, Falque M, Stam P, den Nijs JCM, Bachmann K (2003) Genetic structure of a population sample of apomictic dandelions. Heredity 90:326–335

    Article  Google Scholar 

  • van Soest JL (1963) Taraxacum species from India, Pakistan and neighbouring countries. Wentia 10:1–91

    Google Scholar 

  • Vašut RJ, van Dijk PJ, Falque M, Trávníček B, de Jong JH (2004) Development and characterization of nine new microsatellite markers in Taraxacum (Asteraceae). Molec Ecol Notes 4:645–648

    Article  Google Scholar 

  • Vašut R, Štěpánek J, Kirschner J (2005) Two new apomictic microspecies of the section Erythrosperma from Central Europe. Preslia 77:197–210

    Google Scholar 

  • Vellend M, Drummond EBM, Muir JL (2009) Ecological differentiation among genotypes of dandelions (Taraxacum officinale). Weed Sci 57:410–416

    Article  CAS  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ (eds) PCR protocols: A guide to methods and amplifications. Academic Press, San Diego, pp 315–322

    Chapter  Google Scholar 

  • Widmer A, Baltisberger M (1999) Extensive intraspecifi chloroplast DNA (cpDNA) variation in the alpine Draba aizoides L. (Brassicaceae): haplotype relationships and population structure. Molec Ecol 8:1405–1415

    Article  CAS  Google Scholar 

  • Wittzell H (1999) Chloroplast DNA variation and reticulate evolution in sexual and apomictic sections of dandelions. Mol Ecol 8:2023–2035

    Article  CAS  PubMed  Google Scholar 

  • Záveská Drábková L, Kirschner J, Štěpánek J, Záveský L, Vlček Č (2009) Analysis of nrDNA polymorphism in closely related diploid sexual, tetraploid sexual and polyploid agamospermous species. Pl Syst Evol 278:67–85

    Article  Google Scholar 

  • Záveský L, Jarolímová V, Štěpánek J (2005) Nuclear DNA Content Variation within the Genus Taraxacum (Asteraceae). Folia Geobot 40:91–104

    Article  Google Scholar 

  • Zeisek V, Kirschner J, Štěpánek J, Amini Rad M. Microsatellite variation, sexual reproduction and taxonomy of Taraxacum sect. In: Dioszegia (Compositae–Cichorieae): relationships on a large spatial scale. Preslia (submitted)

  • Zhai DT, An ZX, Tan DY (1997) A search for sexual and agamospermous Taraxacum species in Xinjiang. Acta Bot Boreal-Occid Sin 17:1–7

    CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to T. Černý who determined diploidy in selected samples by means of flow cytometry. The study was supported a long-term research development project of Institute of Botany ASCR, no. RVO 67985939 and by the Ministry of Education grant no. ME10143 of the KONTAKT scheme; the support was also provided by the Czech National Grant Agency grant, no. GA13–13368S and by an FP7 grant for the project DRIVE4EU, no 613697.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kirschner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirschner, J., Záveská Drábková, L., Štěpánek, J. et al. Towards a better understanding of the Taraxacum evolution (Compositae–Cichorieae) on the basis of nrDNA of sexually reproducing species. Plant Syst Evol 301, 1135–1156 (2015). https://doi.org/10.1007/s00606-014-1139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1139-0

Keywords

Navigation