Skip to main content
Log in

To attract or to repel? Diversity, evolution and role of the “most peculiar organ” in the Cuscuta flower (dodder, Convolvulaceae)—the infrastaminal scales

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Cuscuta (dodders) is the only genus in Convolvulaceae and the Solanales more broadly in which corolla-stamen structures called infrastaminal scales (IFS) have reached a high degree of elaboration and diversification in a great number of species. Historically, morphological diversity of IFS has provided some of the most useful taxonomic characters at the species-level. However, their function has not been determined. We have performed a comparative study of the IFS in 147 Cuscuta taxa using light, scanning and transmission electron microscopy, and results were analyzed in relation to a Cuscuta phylogeny obtained from a combined analysis of nuclear ITS and plastid trnL-F sequences. The morphology and histochemistry of scales and/or trichomes on the staminal filaments were also examined in several other Convolvulaceae genera to provide a preliminary foundation for homology interpretation. To test the hypothesis that the role of IFS in Cuscuta is connected to sexual reproduction, we analyzed the correlations between scale characters and previously published values for pollen/ovule ratios and the number of stomata found in the nectary at the base of the ovary. While the correlations at the level of the entire genus were very low, subgeneric partitions revealed a strong relationship between scale characters and sexual reproduction indicators in subgenus Monogynella. However, this connection declined drastically in the subgenera Cuscuta and Grammica. Our results strongly suggest that scales in Cuscuta evolved in connection to a modification of their function in the flower: from nectar protection and holding in the first diverged subgenus Monogynella, to ovary/ovule protection against herbivorous insects in the derived subgenera Cuscuta and Grammica. Thus at least in the case of the latter subgenera, the protective/repellent role of the IFS may conflict with the attractant/rewarding function of the nectary found at the base of the ovary. In subgenus Monogynella, IFS fimbriae are similar to uniseriate glandular hairs, with the secretory cells entirely exposed. In the subgenera Grammica and Cuscuta, the fimbriae become more complex, with an internal distal laticifer, and a precise mechanism of latex release. Our study elaborates further on the development and ultrastructure of scales in C. gronovii, and provides details on the anatomy of the IFS in other species. The new morphology and micromorphology data confirm the significance of these structures for species-level systematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420. doi:10.1034/j.1600-0706.2000.910301.x

    Article  Google Scholar 

  • Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331. doi:10.1146/annurev.ecolsys.110308.120307

    Article  Google Scholar 

  • Austin DF (1998) Parallel and convergent evolution in the Convolvulaceae. In: Mathews P (ed) Biodiversity and taxonomy of flowering plants. Mentor Books, Calicut, pp 201–224

    Google Scholar 

  • Babington CC (1844) On some species of Cuscuta. Ann Mag Nat Hist 13:249–254

    Google Scholar 

  • Beliz T (1986) A revision of Cuscuta sect. Cleistogrammica using phenetic and cladistic analyses with a comparison of reproductive mechanisms and host preferences in species from California, Mexico, and Central America. Dissertation, University of California

  • Cain AJ (1947) The use of nile blue in the examination of lipoids. Q J Microsc Sci 88:383–392

    Google Scholar 

  • Choisy JD (1841) De Convolvulaceis dissertatio. Mem Soc Phys Hist Nat Genève 9:261–288

    Google Scholar 

  • Clark G (1981) Staining procedures, 4th edn. Williams & Wilkins, London

    Google Scholar 

  • Condon JM, Fineran BA (1989) Distribution and organization of articulated laticifers in Calystegia silvatica (Convolvulaceae). Bot Gaz 150:289–302. doi:10.1086/337774

    Article  Google Scholar 

  • Costea M (2007–onward) Digital Atlas of Cuscuta (Convolvulaceae) Wilfrid Laurier University, Ontario. http://www.wlu.ca/page.php?grp_id=2147&p=8968 (accessed 23 September 12)

  • Costea M, Stefanović S (2009a) Cuscuta jepsonii (Convolvulaceae): an invasive weed or an extinct endemic? Am J Bot 96:1744–1750. doi:10.3732/ajb.0800425

    Article  PubMed  Google Scholar 

  • Costea M, Stefanović S (2009b) Molecular phylogeny of the Cuscuta californica complex (Convolvulaceae) and a new species from New Mexico and Trans-Pecos. Syst Bot 34:570–579. doi:10.1600/036364409789271317

    Article  Google Scholar 

  • Costea M, Stefanović S (2010) Evolutionary history and taxonomy of the Cuscuta umbellata complex (Convolvulaceae): evidence of extensive hybridization from discordant nuclear and plastid phylogenies. Taxon 59:1783–1800

    Google Scholar 

  • Costea M, Tardif FJ (2006) The biology of Canadian weeds. Cuscuta campestris Yuncker, C. gronovii Willd. ex Schult., C. umbrosa Beyr. ex Hook., C. epithymum (L.) L. and C. epilinum Weihe. Can J Pl Sci 86:293–316

    Article  Google Scholar 

  • Costea M, Nesom GL, Tardif FJ (2005) Taxonomic status of Cuscuta nevadensis and C. veatchii (Convolvulaceae) in North America. Brittonia 57:264–272. doi:10.1663/0007-196X(2005)057[0264:TSOCNA]2.0.CO;2

    Google Scholar 

  • Costea M, Nesom GL, Stefanović S (2006a) Taxonomy of the Cuscuta pentagona complex (Convolvulaceae) in North America. Sida 22:151–175

    Google Scholar 

  • Costea M, Nesom GL, Stefanović S (2006b) Taxonomy of the Cuscuta salina-californica complex (Convolvulaceae). Sida 22:177–195

    Google Scholar 

  • Costea M, Nesom GL, Stefanović S (2006c) Taxonomy of the Cuscuta indecora (Convolvulaceae) complex in North America. Sida 22:209–225

    Google Scholar 

  • Costea M, Aiston F, Stefanović S (2008) Species delimitation, phylogenetic relationships, and two new species in the Cuscuta gracillima complex (Convolvulaceae). Botany 86:670–681. doi:10.1139/B08-030

    Article  CAS  Google Scholar 

  • Costea M, Wright M, Stefanović S (2009) Untangling the systematics of salt marsh dodders: Cuscuta pacifica, a new segregate species from Cuscuta salina (Convolvulaceae). Syst Bot 34:787–795. doi:10.1600/036364409790139583

    Article  Google Scholar 

  • Costea M, Garcia IR, Stefanović S (2011a) Systematics of ‘horned’ dodders: phylogenetic relationships and two new species within Cuscuta (Convolvulaceae). Botany 89:715–730. doi:10.1139/b11-049

    Article  Google Scholar 

  • Costea M, Spence I, Stefanović S (2011b) Systematics of Cuscuta chinensis species complex (Convolvulaceae): evidence for long-distance dispersal and one new species. Org Divers Evol 11:373–386. doi:10.1007/s13127-011-0061-3

    Article  Google Scholar 

  • Cox G, Sanders F, Tinker PB, Wild JA (1975) Ultrastructural evidence relating to host-endophyte transfer in a vesicular-arbuscular mycorrhiza. Academic Press, London

    Google Scholar 

  • Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46

    Article  Google Scholar 

  • Deroin T (1992) Anatomie florale de Humbertia madagascariensis Lam. Contribution à la morphologie comparée de la fleur et du fruit des Convolvulaceae. Adansonia 2:235–255

    Google Scholar 

  • Deroin T (2002) Anatomie florale de Maripa (Convolvulaceae-Erycibeae). Adansonia 24:93–106

    Google Scholar 

  • Dussourd DE, Denno RF (1991) Deactivation of plant defense: correspondence between insect behaviour and secretory canal architecture. Ecology 72:1383–1396. doi:10.2307/1941110

    Article  Google Scholar 

  • Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin and functioning. Protoplasma 216:1–30. doi:10.1007/BF02680127

    Article  PubMed  CAS  Google Scholar 

  • Eich E (2008) Solanaeae and Convolvulaceae—secondary metabolites: biosynthesis, chemotaxonomy, biological and economic significance. Springer, Berlin

    Google Scholar 

  • Eichler AW (1875) Blüthendiagramme. W. Engelmann, Leipzig

    Google Scholar 

  • Elango G, Bagavan A, Kamaraj C, Zahir AA, Rahuman AA (2009) Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitol Res 105:1567–1576. doi:10.1007/s00436-009-1593-8

    Article  PubMed  CAS  Google Scholar 

  • Endress PK (2012) Evolutionary diversification of the flowers in angiosperms. Am J Bot 98:370–396. doi:10.3732/ajb.1000299

    Article  Google Scholar 

  • Endress PK, Matthews ML (2006) Elaborate petals and staminodes in eudicots: diversity, function and evolution. Org Divers Evol 6:257–293. doi:10.1016/j.ode.2005.09.005

    Article  Google Scholar 

  • Engelmann G (1859) Systematic arrangement of the species of the genus Cuscuta, with critical remarks on old species and descriptions of new ones. Trans Acad Sci St Louis 1:453–523

    Google Scholar 

  • Erbar C (1991) Sympetaly—a systematic character? Bot Jahrb Syst 112:417–451

    Google Scholar 

  • Erbar C, Leins P (2011) Synopsis of some important, non-DNA character states in the asterids with special reference to sympetaly. Plant Div Evol 129:93–123. doi:10.1127/1869-6155/2011/0129-0031

    Article  Google Scholar 

  • Fineran BA (1982) Distribution and organization of non-articulated laticifers in mature tissues of poinsettia (Euphorbia pulcherrima Willd.). Ann Bot 50:207–220

    Google Scholar 

  • Gandhi KN, Thomas RD (1983) Variations in the floral structure of Cuscuta L. Phytology 53:184–486

    Google Scholar 

  • García MA (1999) Cuscuta subgenus Cuscuta (Convolvulaceae) in Ethiopia, with description of a new species. Ann Bot Fennici 36:165–170

    Google Scholar 

  • García MA, Martin MP (2007) Phylogeny of Cuscuta subgenus Cuscuta (Convolvulaceae) based on nrDNA ITS and chloroplast trnL intron sequences. Syst Bot 32:899–916

    Article  Google Scholar 

  • Govil CM (1972) Morphological studies in the family Convolvulaceae. IV. Vascular anatomy of the flower. Proc Ind Acad Sci 75(Sect B): 271–282

    Google Scholar 

  • Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 12:631–638. doi:10.1016/j.tplants.2008.09.005

    Article  Google Scholar 

  • Heide-Jørgensen HS (2008) Parasitic flowering plants. Brill, Leiden

    Google Scholar 

  • Hintze JL (2007) NCSS 2007: statistical analysis and graphics, user’s Guide. Number Cruncher Statistical Systems, Kaysville

    Google Scholar 

  • Johri BM, Tiagi B (1952) Floral morphology and seed formation in Cuscuta reflexa Roxb. Phytomorph 2:162–180

    Google Scholar 

  • Kirk PW (1970) Neutral red as lipid fluorochrome. Stain Technol 45:1–4

    PubMed  CAS  Google Scholar 

  • Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley

    Google Scholar 

  • Kuoh CS, Liao GI (1993) Flower initiation and development in Cuscuta australis R. Br. (Convolvulaceae). Taiwania 38:99–108

    Google Scholar 

  • Leins P, Erbar C (2010) Flower and fruit: morphology, ontogeny, phylogeny, function and ecology. Schweizerbart, Stuttgart

    Google Scholar 

  • Lejoly J, Lisowski S (1986) Paralepistemon, nouveau genre de Convolvulaceae d’Afrique tropicale. Bull Jard Bot Nat Belg 56:195–197

    Article  Google Scholar 

  • Lejoly J, Lisowski S (1987) Paralepistemon curtoi (Rendle) Lejoly and Lisowski comb. nov. (Convolvulaceae). Bull Jard Bot Nat Belg 57:271–272

    Article  Google Scholar 

  • Liao GI, Kuoh CS, Chen MY (2005) Morphological observation on floral variations of the genus Cuscuta in Taiwan. Taiwania 50:123–130

    Google Scholar 

  • Lyshede OB (1985) Morphological and anatomical features of Cuscuta pedicellata and C. campestris. Nord J Bot 5:65–77

    Article  Google Scholar 

  • Ma F, Peterson CA (2000) Plasmodesmata in onion (Allium cepa L.) roots: a study enabled by improved fixation and embedding techniques. Protoplasma 211:103–105. doi:10.1007/BF01279903

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2012) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mequiteproject.org

  • Manos PS, Miller RE, Wilkin P (2001) Phylogenetic analysis of Ipomoea, Argyreia, Stictocardia, and Turbina suggests a generalized model of morphological evolution in morning glories. Syst Bot 26:585–602

    Google Scholar 

  • Mehra BK, Hiradhar PK (2002) Cuscuta hyalina Roth., an insect development inhibitor against common house mosquito Culex quinquefasciatus Say. J Environ Biol 23:335–339

    PubMed  Google Scholar 

  • Musselman LJ (1986) The genus Cuscuta in Virginia. Castanea 51:188–196

    Google Scholar 

  • Nemec SB (1982) Histology and histochemistry. American Phytopathological Society, St. Paul

    Google Scholar 

  • Nishino E (1983) Corolla tube formation in the Tubiflorae and Gentianales. Bot Mag Tokyo 96:223–243. doi:10.1007/BF02499003

    Article  Google Scholar 

  • Ooststroom SJV (1934) A monograph of the genus Evolvulus. Meded Bot Mus Herb Rijks Univ Utrecht 14:1–267

    Google Scholar 

  • Passarelli LM (1999) Morphology, reserves and pollen viability of some Solanum Sect. Cyphomandropsis species. Grana 38:284–288. doi:10.1080/001731300750044492

    Article  Google Scholar 

  • Pickard WF (2008) Laticifers and secretory ducts: two other tube systems in plants. New Phytol 177:877–888. doi:10.1111/j.1469-8137.2007.02323.x

    Article  PubMed  Google Scholar 

  • Prenner G, Teppner H (2005) Anther development, pollen presentation and pollen adhesive of parenchymatous origin in Calliandra angustifolia (Leguminosae-Mimosoideae-Ingeae). Phyton (Horn, Austria) 45:267–286

    Google Scholar 

  • Prenner G, Deutsch G, Harvey P (2002) Floral development and morphology in Cuscuta reflexa Roxb. (Convolvulaceae). Stapfia 80:311–322

    Google Scholar 

  • Ramos MV, Grangeiro TB, Freire EA, Sales MP, Souza DP, Araújo ES, Freitas DT (2010) The defensive role of latex in plants: detrimental effects on insects. Arthropod Plant Interact 4:57–76. doi:10.1007/s11829-010-9084-5

    Article  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain for electron microscopy. J Cell Biol 17:208–211

    Article  PubMed  CAS  Google Scholar 

  • Ronse De Craene LP, Smets EF (2001) Staminodes: their morphological and evolutionary significance. Bot Rew 67:351–402

    Article  Google Scholar 

  • Ruzin S (1999) Plant microtechnique and microscopy. Oxford University Press, Oxford

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultra Mol Struct R 26:31–43. doi:10.1016/S0022-5320(69)90033-1

    Article  CAS  Google Scholar 

  • Srivastava US, Mamta JAK (1990) An insect growth regulatory factor in Cuscuta reflexa Roxb. Nat Acad Sci Letters 13:361–363

    CAS  Google Scholar 

  • Staples GW (2007) A synopsis of Lepistemon (Convolvulaceae) in Australasia. Kew Bull 62:223–232

    Google Scholar 

  • Staples GW (2012) Convolvulaceae unlimited. http://convolvulaceae.myspecies.info/ (accessed 01/09/12)

  • Stefanović S, Costea M (2008) Reticulate evolution in the parasitic genus Cuscuta (Convolvulaceae): over and over again. Botany 86:791–808

    Article  Google Scholar 

  • Stefanović S, Olmstead R (2004) Testing the phylogenetic position of a parasitic plant (Cuscuta, Convolvulaceae, Asteridae): Bayesian inference and the parametric bootstrap on data drawn from three genomes. Syst Biol 53:384–399. doi:10.1080/10635150490445896

    Article  PubMed  Google Scholar 

  • Stefanović S, Krueger L, Olmstead RG (2002) Monophyly of the Convolvulaceae and circumscription of their major lineages based on DNA sequences of multiple chloroplast loci. Am J Bot 89:1510–1522. doi:10.3732/ajb.89.9.1510

    Article  PubMed  Google Scholar 

  • Stefanović S, Austin DF, Olmstead RG (2003) Classification of Convolvulaceae: a phylogenetic approach. Syst Bot 28:791–806. doi:10.1043/02-45.1

    Google Scholar 

  • Stefanović S, Kuzmina M, Costea M (2007) Delimitation of major lineages within Cuscuta subgenus Grammica (Convolvulaceae) using plastid and nuclear DNA sequences. Am J Bot 94:568–589. doi:10.3732/ajb.94.4.568

    Article  PubMed  Google Scholar 

  • Tiagi B (1966) Floral morphology of Cuscuta reflexa Roxb. and C. lupuliformis Krocker with a brief review of the literature on the genus Cuscuta. Bot Mag Tokyo 79:89–97

    Google Scholar 

  • Welsh M, Stefanović S, Costea M (2010) Pollen evolution and its taxonomic significance in Cuscuta (dodders, Convolvulaceae). Plant Syst Evol 285:83–101. doi:10.1007/s00606-009-0259-4

    Article  Google Scholar 

  • Wilkin P (1999) A morphological cladistic analysis of the Ipomoeeae (Convolvulaceae). Kew Bull 54:853–876

    Article  Google Scholar 

  • Wright MAR, Welsh M, Costea M (2011) Diversity and evolution of the gynoecium in Cuscuta (dodders, Convolvulaceae) in relation to their reproductive biology: two styles are better than one. Plant Syst Evol 296:51–76. doi:10.1007/s00606-011-0476-5

    Article  Google Scholar 

  • Wright MAR, Ianni MD, Costea M (2012) Diversity and evolution of pollen-ovule production in Cuscuta (dodders, Convolvulaceae) in relation to floral morphology. Plant Syst Evol 298:369–389. doi:10.1007/s00606-011-0550-z

    Article  Google Scholar 

  • Yuncker TG (1921) Revision of the North American and West Indian species of Cuscuta. Illinois Biol Monogr 6:91–231

    Google Scholar 

  • Yuncker TG (1932) The genus Cuscuta. Mem Torr Bot Club 18:113–331

    Google Scholar 

Download references

Acknowledgments

We would like to thank Andrew McLean and Nicole Atcheson for their help with floral dissections. Susan Belfry was a tremendous help with technical assistance for TEM. We are also grateful to Peter Endress and Gerhard Prenner for great suggestions that improved an earlier version of this article. Tom Van Devender, Ignacio García Ruiz, Eleazar Carranza, and the following herbaria provided the plant material: AAU, ALTA, ARIZ, ASU, B, BAB, BOL, BRIT, CANB, CAS, CEN, CHR, CHSC, CIIDIR, CIMI, CTES, DAO, F, G, GH, H, HUFU, IAC, IEB, IND, J, JEPS, LL, LP, LPB, LPS, K, MEL, MERL, MEXU, MICH, MO, NMC, NY, OAC, OKLA, OSC, OXF, PACA, PRE, QCNE, QFA, P, PACA, RB, RSA, SAM, S, SD, SGO, SI, SPF, TEX, TRT, TRTE, UA, UB, UBC, UCR, UCT, UNB, UNM, UPRRP, UPS, US, USAS, WTU and XAL. This research was supported by a Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery grant to M. Costea (327013-12), an undergraduate NSERC Grant to K. Dockstader (2011–2012), and an undergraduate WLU FOSSA grant to C. Clayson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Costea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riviere, S., Clayson, C., Dockstader, K. et al. To attract or to repel? Diversity, evolution and role of the “most peculiar organ” in the Cuscuta flower (dodder, Convolvulaceae)—the infrastaminal scales. Plant Syst Evol 299, 529–552 (2013). https://doi.org/10.1007/s00606-012-0741-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0741-2

Keywords

Navigation