Skip to main content
Log in

Genome size in Filago L. (Asteraceae, Gnaphalieae) and related genera: phylogenetic, evolutionary and ecological implications

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Recent studies have proposed a monophyletic circumscription of Filago and a new subgeneric treatment for this genus. The aim of this study was to analyse the nuclear genome size in a phylogenetic framework in order to evaluate the systematic significance of this trait to provide insights into the dynamics of genome size evolution and to assess relationships among DNA content, specific life and ecological features within the study group. A holoploid genome size of 76 samples corresponding to 27 taxa was determined using flow cytometry, which represents the first estimates of genome size in Bombycilaena, Filago, Ifloga and Logfia. Chromosome counts were performed for six species. Parsimony and Bayesian analysis of ITS, ETS and rpl32-trnL intergenic spacer sequence data were used to construct molecular phylogenetic trees. The evolution of genome size was investigated troughout the Brownian motion model with the three scaling parameters λ, κ and δ. The mean 2C-value in the Filago group is relatively low (1.3644 ± 0.0079 pg) and homogeneous among species. A high degree of congruence was found between genome size distribution and the major phylogenetic lineages obtained. The generally accepted assumption that annual, ephemeral and autogamous species show low genome sizes was confirmed. Also the relatively high DNA contents found for a couple of species could be correlated with their highly specific ecological requirements. Phylogeny seems to represent the most important factor explaining the pattern of DNA amount variation in the Filago group. The DNA amount does not seem to be strongly influenced by selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addinsoft (2009) XLSTAT. Addinsoft Inc. Paris, France. http://www.xlstat.com/ (Accessed 23 August 2011)

  • Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6):716–723

    Article  Google Scholar 

  • Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot (Oxford) 94:897–911

    Article  CAS  Google Scholar 

  • Anderberg AA (1991) Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Bot 104:5–195

    Google Scholar 

  • Andrés-Sánchez S, Galbany-Casals M, Rico E, Martínez-Ortega MM (2011) A nomenclatural treatment for Logfia Cass. and Filago L. (Asteraceae) as newly circumscribed: typification of several names. Taxon 60:572–576

    Google Scholar 

  • Apg III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Lin Soc 161:105–121

    Article  Google Scholar 

  • Baack EJ, Whitney KD, Rieseberg LH (2005) Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol 167:623–630

    Article  PubMed  CAS  Google Scholar 

  • Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Pl Syst Evol 257:95–117

    Article  CAS  Google Scholar 

  • Barow M, Meister A (2003) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Pl Cell Environ 26:571–584

    Article  Google Scholar 

  • Bennett MD (1971) The duration of meiosis. Proc R Soc B 178:277–299

    Article  CAS  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc B 181:109–135

    Article  CAS  Google Scholar 

  • Bennett MD (1976) DNA amount, latitude, and crop plant distribution. Environm Exp Bot 16:93–108

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2010a) Angiosperm DNA C-values Database (release 7.0, Dec. 2010). http://www.kew.org/cvalues/ (Accessed 22 September 2011)

  • Bennett MD, Leitch IJ (2010b) Nuclear DNA amounts in Angiosperms: progress, problems and prospects. Ann Bot (Oxford) 95:45–90

    Article  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Pl Cell 9:1509–1514

    CAS  Google Scholar 

  • Bennetzen JL, Ma JX, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot (Oxford) 95:127–132

    Article  CAS  Google Scholar 

  • Bergh NG, Trisos CH, Verboom GA (2011) Phylogeny of the “Ifloga clade” (Asteraceae, Gnaphalieae), a lineage occurring disjointly in the Northern and Southern Hemisphere, and inclusion of Trichogyne in synonymy with Ifloga. Taxon 60:1065–1075

    Google Scholar 

  • Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L (2000) Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae). Ann Bot (Oxford) 86:565–573

    Article  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molec Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  • Cerbah M, Coulaud J, Brown SC, Siljak-Yakovlev S (1999) Evolutionary DNA variation in the genus Hypochaeris. Heredity 82:261–266

    Article  PubMed  CAS  Google Scholar 

  • Chooi WY (1971) Variation in nuclear DNA content in the genus Vicia. Genetics 68:195–211

    PubMed  CAS  Google Scholar 

  • Chrtek J, Zahradnicek J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot (Oxford) 104:161–178

    Article  CAS  Google Scholar 

  • Comeron JM (2001) What controls the length of noncoding DNA? Curr Opin Genet Dev 11:652–659

    Article  PubMed  CAS  Google Scholar 

  • Dalgaard V (1986) Chromosome studies in flowering plants from Macaronesia. Anales Jard Bot Madrid 43:83–111

    Google Scholar 

  • Devos KM, Brown JKM, Benetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Lysak MA, Nardy L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. (Oxford) 82 (Supplement A): 17–26

  • Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 41–65

  • Dušková E, Kolář F, Skelenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148

    Google Scholar 

  • Escudero M, Hipp AL, Luceño M (2010) Karyotype stability and predictors of chromosome Lumber variation in sedges: a study in Carex section Sppirostachyae (Cyperaceae). Molec Phylogen Evol 57:353–363

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Galbany-Casals M, Andrés-Sánchez S, García-Jacas N, Susanna A, Rico E, Martínez-Ortega MM (2010) How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae) with special focus on the genus Filago. Taxon 59:1671–1689

    Google Scholar 

  • García S, Sanz M, Garnatje T, Kreitschitz A, McArthur ED, Vallès J (2004) Variation of DNA amount in 47 populations of the subtribe Artemisiinae and related taxa (Asteraceae, Anthemideae): karyological, ecological, and systematic implications. Genome 47:1004–1014

    Article  PubMed  Google Scholar 

  • García S, Inceer H, Garnatje T, Vallès J (2005) Genome size variation in some representatives of the genus Tripleurospermum. Biol Pl 49:381–387

    Article  Google Scholar 

  • Garnatje T, García S, Canela MÁ (2007) Genome size variation from a phylogenetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographic implications. Pl Syst Evol 264:117–134

    Article  CAS  Google Scholar 

  • Goloboff PA, Farris JS, Nixon K (2003) TNT: Tree Analysis Using New Technology Version 1.1. Program and documentation, available from the authors. http://www.zmuc.dk/public/phylogeny/ (Accessed 11 October 2012)

  • Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev (London) 76:65–101

    CAS  Google Scholar 

  • Gregory TR (2003) Insertion-deletion biases and the evolution of genome size. Gene 324:15–34

    Article  Google Scholar 

  • Greilhuber J (1986) Severely distorted Feulgen-DNA amounts in Pinus (Coniferophytina) after non additive fixations as a result of meristematic self-tanning with vacuole contents. Canad J Genet Cytol 28:409–415

    CAS  Google Scholar 

  • Greilhuber J (1988) “Self-tanning”—a new an important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Pl Syst Evol 158:87–96

    Article  CAS  Google Scholar 

  • Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot (Oxford) 82 (Supplement A): 27–35

  • Greilhuber J (2005) Intraspecific variation in genome size in Angiosperms: identifying its existence. Ann Bot (Oxford) 95:91–98

    Article  CAS  Google Scholar 

  • Greilhuber J, Obermayer R (1997) Genome size and maturity group in Glycine max (soybean). Heredity 78:547–551

    Article  Google Scholar 

  • Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “Genome Size” and “C-Value” to describe nuclear DNA contents. Ann Bot (Oxford) 95:255–260

    Article  CAS  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro CM (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 41–65

  • Grime JP, Mowforth MA (1982) Variation in genome size—an ecological interpretation. Nature 299:151–153

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001) First nuclear DNA C-values for another 25 angiosperm families. Ann Bot (Oxford) 88:851–858

    Article  CAS  Google Scholar 

  • Harmon L, Weir J, Brock C, Glor R, Challenger W, Hunt G (2009) Package geiger. Analysis of evolutionary diversification. http://cran.r-project.org/web/packages/geiger/geiger.pdf (Accessed 30 May 2012)

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Huelsenbeck P, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is liked to phylogeny, life form, ecology, and speciation rates. Molec Biol Evol 21:860–869

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA (1998) Relationships of cereal crops and other grasses. Proc Natl Acad Sci USA 95:2005–2010

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5:66–76

    Article  Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot (Oxford) 95:177–190

    Article  CAS  Google Scholar 

  • La Cour LF (1954) Smear and squash techniques in plant cytology. Laboratory practique 3:326–330

    Google Scholar 

  • Labani RM, Elkington TT (1987) Nuclear DNA variation in the genus Allium L. (Liliaceae). Heredity 59:119–128

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 153–176

  • Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot (Oxford) 82:85–94

    Article  CAS  Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across lands plants (Embryophyta). Ann Bot (Oxford) 95:207–217

    Article  CAS  Google Scholar 

  • Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Molec Biol Evol 26:85–98

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  PubMed  CAS  Google Scholar 

  • MacGillivray CW, Grime JP (1995) Genome size predicts frost-resistance in British herbaceous plants-implications for rates of vegetation response to global warming. Funct Ecol 9:320–325

    Article  Google Scholar 

  • Maddison DR (1991) The discovery and importance of multiple islands of most-parsimonious trees. Syst Zool 40:315–328

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. Version 2.73. http://mesquiteproject.org (Accessed 9 September 2011)

  • Malallah GA, Masood M, Al-Dosari M (2001) Chromosome numbers of the Kuwaiti flora, III. Willdenowia 31:411–418

    Google Scholar 

  • Marhold K, Kudoh H, Pak JH, Watanabe K, Spaniel S, Lihová J (2010) Cytotype diversity and genome size variation in eastern Asian polyploidy Cardamine (Brassicaceae) species. Ann Bot (Oxford) 105:249–264

    Article  CAS  Google Scholar 

  • Mishiba K-I, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Ann Bot (Oxford) 85:665–673

    Article  CAS  Google Scholar 

  • Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275

    Article  PubMed  CAS  Google Scholar 

  • Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot (Oxford) 95:119–125

    Article  CAS  Google Scholar 

  • Ohri D (1998) Genome size variation and plant systematics. Ann Bot (Oxford) 82 (Supplement A): 75–83

  • Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol 33:105–110

    Article  PubMed  CAS  Google Scholar 

  • Pagel M (1997) Inferring evolutionary processes from phylogenies. Zoologica Scripta 26:331–348

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  PubMed  CAS  Google Scholar 

  • Pagel M, Meade A (2007) BayesTraits. Computer progam and documentation. http://www.evolution.rdg.ac.uk/BayesTraits.html (Accessed 21 September 2011)

  • Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genetics 17:23–28

    Article  CAS  Google Scholar 

  • Petrov DA (2002) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–91

    Article  PubMed  CAS  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Molec Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Randall R (2007) Global compendium of weeds. http://www.hear.org/gcw/ (Accessed 22 February 2011)

  • Rayburn AL, Auger JA (1990) Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theor Appl Genet 79:470–474

    Article  Google Scholar 

  • Reeves G, Francis D, Stuart Davies M, Rogers HJ, Hodkinson TR (1998) Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Ann Bot (Oxford) 82 (Supplement A): 99–105

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Salabert de Campos JM, Sousa SM, Souza Silva P, Pinheiro LC, Sampaio F, Viccini F (2011) Chromosome numbers and DNA C-values in the genus Lippia (Verbenaceae). Pl Syst Evol 291:133–140

    Article  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nature Genetics 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • Smissen RD, Galbany-Casals M, Breitwieser I (2011) Ancient allopolyploidy in the everlasting daisies (Asteraceae: Gnaphalieae): complex relationships among extant clades. Taxon 60:649–662

    Google Scholar 

  • Suda J, Kyncl T, Freiová R (2003) Nuclear DNA amounts in Macaronesian angiosperms. Ann Bot (Oxford) 92:153–164

    Article  Google Scholar 

  • Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot (Oxford) 100:1323–1335

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  PubMed  CAS  Google Scholar 

  • Temsch EM, Greilhuber J (2001) Genome size in Arachis duranensis: a critical study. Genome 44:826–830

    PubMed  CAS  Google Scholar 

  • Temsch EM, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82:63–80

    Google Scholar 

  • Thomas CA (1971) The genetic organization of chromosomes. Annual Rev Genet 5:237–256

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Torrell M, Vallès J (2001) Genome size in 21 Artemisia L. Species (Asteraceae, Anthemideae): Systematic, evolutionary, and ecological implications. Genome 44:231–238

    PubMed  CAS  Google Scholar 

  • Tukey JW (1953) Some selected quick and easy methods of statistical analysis. Trans New York Acad Sci 16(2):88–97

    Article  CAS  Google Scholar 

  • Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genetics 19:609–614

    Article  CAS  Google Scholar 

  • Wagenitz G (1965) Zur Systematik und Nomenklatur einiger Arten von Filago L. emend. Gaertn. subgen. Filago (“F. germanica” Gruppe). Willdenowia 4:37–59

    Google Scholar 

  • Walker DJ, Moñino I, Correal E (2006) Genome size in Bituminaria bituminosa (L.) C. H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environm Exp Bot 55:258–265

    Article  CAS  Google Scholar 

  • Watanabe K (2010) Index to Chromosome numbers in Asteraceae. http://www.lib.kobe-u.ac.jp/infolib/meta_pub/G0000003asteraceae_e (Accessed 22 February 2011)

  • Weiss-Schneeweiss H, Greilhuber J, Schneeweis GM (2006) Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Amer J Bot 93:148–156

    Article  CAS  Google Scholar 

  • Wendel JF, Cronn RC, Johnston S, Price HJ (2002) Feast and famine in plant genomes. Genetica 115:37–47

    Article  PubMed  CAS  Google Scholar 

  • Záveský L, Jarolímova V, Štěpánek J (2005) Nuclear DNA content variation within the genus Taraxacum (Asteraceae). Folia Geobot 40:91–104

    Article  Google Scholar 

  • Zonneveld BJM (2001) Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Pl Syst Evol 229:125–130

    Article  CAS  Google Scholar 

  • Zonneveld BJM, Duncan GD (2010) Genome sizes of Eucomis L’Hér. (Hyacinthaceae) and a description of the new species Eucomis grimshawii G.D. Duncan & Zonneveld. Pl. Syst. Evol. 284:99–109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our deep gratitude to Prof. J. Greilhuber for generous help at the early stages of this work and for comments that have improved this manuscript. Many thanks to Dr. M. Galbany-Casals for her constant support, enthusiastic discussions and help with phylogenetic analyses. Also our acknowledgement goes to Dr. A.M. Escudero Lirio, who helped with the statistical analyses using R software, and Dr. F. Gallego and Dr. L. Delgado for advice regarding chromosome counts. Thanks are also due to our friend Dr. J. Peñas de Giles for his collaboration in the field work. This work was supported by the Spanish Ministerio de Ciencia e Innovación (www.micinn.es) through projects CGL2008-02982-C03-02/CLI, CGL2011-28613-C03-03 and CGL2009-07555. SAS was also supported by a research grant financed by MICINN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Andrés-Sánchez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 4,285 kb)

Appendices

Appendix 1

Taxa, location, date and collectors of all samples included in the analyses of genome size. The EMBL accession numbers (ITS, ETS, rpl32-trnL intergenic spacer) of each taxon from Galbany-Casals et al. (2010) are included in parentheses.

Bombycilaena discolor (Pers.) Laínz, Morocco, Oriental, Taurirt, Narguechoum, Za river, 550 m, 14-IV-2006, S. Andrés–Sánchez et al., SALA134284 (FN645843, FN645560, FN649364); Filago argentea (Pomel) Chrtek & Holub, Morocco, Oriental, mouth of Moulouya, 5 m, 16-IV-2006, S. Andrés–Sánchez et al., SALA134245 (FN645859, FN645569, FN649373); Filago arvensis L., Morocco, Atlas Mountains, Adrar-n-Oukaïmeden, 3,000 m, 29-VI-2006, A. Herrero et al., SALA134334 (FN645885, FN645605, FN649361); Filago carpetana (Lange) Chrtek & Holub, Spain, Teruel, Albarracín, Fuente del Cabrerizo, 1,303 m, 18-VI-2009, S. Andrés–Sánchez et al., SALA135591 (FN645858, FN645568, FN649372); Filago congesta Guss. Ex DC., Spain, Albacete, Elche de la Sierra, road to Riopar, 830 m, 13-VI-2007, S. Andrés–Sánchez et al., SALA134211 (FN645848, FN645577, FN649382); Filago crocidion (Pomel) Cortek & Holub, Morocco, Taza, Daya Chiker (plain Chiker), 1,365 m, 23-VI-2008, S. Andrés–Sánchez et al., SALA139146 (FN645864, FN645601, FN649403); Filago desertorum Pomel, Spain, Almería, Filabres Mountains, 611 m, 31-IV-2007, S. Andrés–Sánchez et al., SALA134350 (FN645874, FN645591, FN649391); Filago discolor (DC.) Andrés–Sánchez & Galbany, Morocco, Beni-Mellall, Col de Tanout ou Fillal, 2,070 m, 6-VII-2006, A. Quintanar et al., SALA134338 (FN645853, FN645564, FN649368); Filago duriaei Lange, Morocco, Taza, Daya Chiker (plain Chiker), 1,370 m, 23-VI-2008, S. Andrés–Sánchez et al., SALA139174 (FN645881, FN645587, FN649389); Filago fuscescens Pomel, Spain, Murcia, El cantal, near to Águilas, 78 m, 3-IV-2009, S. Andrés–Sánchez et al., SALA141935 (FN645846, FN645580, FN649394); Filago gaditana (Pau) Andrés–Sánchez & Galbany, Spain, Pontevedra, Cangas del Morrazo, Playa del Limens, 20 m, 18-V-2009, S. Andrés–Sánchez et al., SALA139193 (FN645869, FN645576, FN649380); Filago griffithii (A. Gray) Andrés–Sánchez & Galbany, Armenia, Ararat, Hadis Mountains, 1,220 m, 1-VII-2005, C. Navarro et al., SALA134833 (FN645888, FN645608, FN649405); Filago hispanica (Degen & Hervier) Chrtek & Holub, Spain, Jaén, Pontones, Laguna de la Cañada Cruz, 1,590 m, 12-VII-2007, S. Andrés–Sánchez et al., SALA134387 (FN645855, FN645565, FN649370); Filago lusitanica (Samp.) P. Silva, Spain, Cáceres, Malpartida de Cáceres, Los Barruecos, 350 m, 23-IV-2009, E. Rico, SALA110253 (FN645866, FN645572, FN649376); Filago lutescens subsp. atlantica Wagenitz, Spain, Cádiz, Tarifa, Facinas, 85 m, 15-VI-2008, S. Andrés–Sánchez et al., SALA139215 (FN645877, FN645595, FN649399); Filago lutescens Jordan subsp. lutescens, Spain, Zamora, Almaraz de Duero, Valdedores, 730 m, 3-VII-2008, L. Delgado et al., SALA134827 (FN645876, FN645594, FN649395); Filago mareotica Delile, Spain, Murcia, Águilas, road to Vera, 7 m, 24-IV-2009, S. Andrés–Sánchez, SALA139217 (FN645879, 645593, FN649393); Filago micropodioides Lange, Morocco, Oriental, between Guercif and Saka, 455 m, 17-III-2008, S. Andrés–Sánchez et al., SALA134397 (FN645850, FN645582, FN649385); Filago nevadensis (Boiss.) Wagenitz & Greuter, Spain, Granada, near Las Sabinas, 2,155 m, 13-VII-2006, J. Peñas, SALA134830 (FN645862, FN645599, FN649401); Filago pygmaea L., Spain, Salamanca, Calvarrasa de Arriba, Ermita de la Peña, 760 m, 5-VI-2009, S. Andrés–Sánchez et al., SALA139211 (FN645868, FN645574, FN649379); Filago pyramidata L., Spain, Tarragona, between Poblet Monastery and Prades, 547 m, 16-VI-2009, S. Andrés–Sánchez et al., SALA110287 (FN645873, FN645590, FN649383); Filago ramosissima Lange, Spain, Granada, Izbor, road to Lanjarón, 534 m, 4-IV-2009, S. Andrés–Sánchez et al., SALA139149 (FN645880, FN645563, FN649367); Filago vulgaris Lam., Spain, Gerona, La Jonquera, between La Jonquera and Cantallops, 220 m, 17-VI-2009, S. Andrés–Sánchez et al., SALA135586 (FN645878, FN645604, FN649406); Ifloga spicata (Forskal) Schultz Bitp.. Spain, Almería, Tabernas, 544 m, 22-II-2004, M. Martínez-Ortega et al., SALA134835 (FN645825, FN645627, FN649356); Logfia clementei (Willk.) Holub, Spain, Almería, Níjar, Monsul, beach of Genoveses, 12 m, 13-IV-2005, M. Santos et al., SALA134322 (FN645837, FN645612, FN649342); Logfia gallica (L.) Coss. & Germ., Spain, Barcelona, between Breda and San Celoni, near to Batlloria, 92 m, 17-VI-2009, S. Andrés–Sánchez et al., SALA139203 (FN645838, FN645556, FN649339); Logfia minima (Sm.) Dumort. Spain, Zamora, Cañizal, 822 m, 9-V-2005, M. Martínez-Ortega et al., SALA134213 (FN645817, FN645613, FN649347).

Appendix 2

Models of evolution of genome size. For each model: values of the log-likelihood, Brownian rate parameter (σ2), third parameter (λ, κ or δ) and Bayes information criterion weight (BIC). The analyses were carried out with 1000 trees subsampled from the phylogenetic Bayesian analysis.

Model

Log-likelihood

σ2

3rd parameter

BIC weight

Brownian motion

39.4336 ± 0.0346

0.2378 ± 0.0008

0.5007 ± 0.0021

Brownian motion + λ

39.8941 ± 0.0268

0.1785 ± 0.0011

0.9336 ± 0.0025

0.1627 ± 0.0023

Brownian motion + κ

39.70835 ± 0.0271

0.1142 ± 0.0018

0.8306 ± 0.0038

0.1280 ± 0.0010

Brownian motion + δ

39.49939 ± 0.0346

0.2514 ± 0.0024

1.0550 ± 0.0087

0.1030 ± 0.0005

Appendix 3

Reconstruction of ancestral 2C-values (in pg) using unordered maximum parsimony for continuous characters for nodes a–f (Fig. 3)

Node

Ancestral character state

a

1.4069

b

1.4249

c

1.4432

d

1.4683

e

1.2658

f

1.4164

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrés-Sánchez, S., Temsch, E.M., Rico, E. et al. Genome size in Filago L. (Asteraceae, Gnaphalieae) and related genera: phylogenetic, evolutionary and ecological implications. Plant Syst Evol 299, 331–345 (2013). https://doi.org/10.1007/s00606-012-0724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0724-3

Keywords

Navigation