Skip to main content

Advertisement

Log in

Strong genetic differentiation on a fragmentation gradient among populations of the heterocarpic annual Catananche lutea L. (Asteraceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In landscapes which are predominately characterised by agriculture, natural ecosystems are often reduced to a mosaic of scattered patches of natural vegetation. Species with formerly connected distribution ranges now have restricted gene flow among populations. This has isolating effects upon population structure, because species are often confined by their limited dispersal capabilities. In this study, we test the effects of habitat fragmentation, precipitation, and isolation of populations on the genetic structure (AFLP) and fitness of the Asteraceae Catananche lutea. Our study area is an agro-dominated ecosystem in the desert–Mediterranean transition zone of the Southern Judea Lowlands in Israel. Our analysis revealed an intermediate level of intra-population genetic diversity across the study site with reduced genetic diversity on smaller scale. Although the size of the whole study area was relatively small (20 × 45 km), we found isolation by distance to be effective. We detected a high level of genetic differentiation among populations but genetic structure did not reflect spatial patterns. Population genetic diversity was correlated neither with position along the precipitation gradient nor with different seed types or other plant fitness variables in C. lutea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackermann O, Svoray T, Haiman M (2008) Nari (calcrete) outcrop contribution to ancient agricultural terraces in the Southern Shephelah, Israel: insights from digital terrain analysis and a geoarchaeological field survey. J Archaeol Sci 35:930–941

    Article  Google Scholar 

  • Aguilar R, Quesada M, Ashworth L, Herreriasdiego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Alexander HM, Foster BL, Ballantyne F, Collins CD, Antonovics J, Holt RD (2012) Metapopulations and metacommunities: combining spatial and temporal perspectives in plant ecology. J Ecol 100:88–103

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4

  • Ben-Gai T, Bitan A, Manes A, Alpert P (1994) Long-term changes in annual rainfall patterns in southern Israel. Theor Appl Climatol 49:59–67

    Article  Google Scholar 

  • Campbell JM, Abbott RJ (1976) Variability of outcrossing frequency in Senecio vulgaris L. Heredity 36:267–274

    Article  Google Scholar 

  • Cheplick GP (1987) The ecology of amphicarpic plants. TREE 2:97–101

    PubMed  CAS  Google Scholar 

  • Cheplick GP (1996) Do seed germination patterns in cleistogamous annual grasses reduce the risk of sibling competition? J Ecol 84:247–255

    Article  Google Scholar 

  • Dan J, Yaalon DH, Koyumdjisky H, Raz Z (1976) The soils of Israel. Volcani Centre Pamphlet 159:43

  • Dannemann A (2000) Der Einfluss von Fragmentierung und Populationsgröße auf die genetische Variation und Fitness von seltenen Pflanzenarten am Beispiel von Biscutella laevigata (Brassicaceae). Diss Bot. J. Cramer, Berlin, Stuttgart

  • Duminil J, Hardy OJ, Petit RJ (2009) Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evol Biol 9:177

    Article  PubMed  Google Scholar 

  • Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604

    Article  Google Scholar 

  • Ellner S, Shmida A (1981) Why are adaptations for long-range seed dispersal rare in desert plants? Oecologia 5:133–144

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Feinbrun-Donath N (1978) Flora palaestina part 3. Isr Acad Sci Humanities, Jerusalem

  • Fischer M, Matthies D (1998) Effects of population size in the rare plant Gentianella germanica. J Ecol 86:195–204

    Article  Google Scholar 

  • Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–85. Conserv Biol 11:727–737

    Article  Google Scholar 

  • Gaudeul M, Taberlet P, Till-Bottraud I (2000) Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol Ecol 9:1625–1637

    Article  PubMed  CAS  Google Scholar 

  • Giladi I, Ziv Y, May F, Jeltsch F (2011) Scale-dependent determinants of plant species richness in a semi-arid fragmented agro-ecosystem. J Veg Sci 22:983–996

    Article  Google Scholar 

  • Givnish TJ (2010) Ecology of plant speciation. Taxon 59(5):1326–1366

    Google Scholar 

  • Goldblatt P (1984) Index to Plant Chromosome Numbers, 1979–1981. Monogr Syst Bot Missouri Bot Gard 8:1–427

    Google Scholar 

  • Goldreich Y (2003) The climate of Israel—observations, research, and applications. Kluwer Academic, Dordrecht

    Google Scholar 

  • Haldimann P, Steinger T, Müller-Schärer H (2003) Low genetic differentiation among seasonal cohorts in Senecio vulgaris as revealed by amplified fragment length polymorphism analysis. Mol Ecol 12(10):2541–2551

    Article  PubMed  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond Ser B Biol Sci 351:1291–1298

    Article  Google Scholar 

  • Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annu Rev Ecol Syst 10:173–200

    Article  Google Scholar 

  • Hancock PJF, Britton NF (2006) Adaptive responses to spatial aggregation and habitat destruction in heterogeneous landscapes. Evol Ecol Res 8(8):1349–1376

    Google Scholar 

  • Hanski I, Gaggiotti OE (2004) Metapopulation biology: past, present, and future. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Elsevier Academic, Amsterdam, pp 3–21

    Chapter  Google Scholar 

  • Harel D, Holzapfel C, Sternberg M (2011) Seed mass and dormancy of annual plants populations and communities decreases with aridity and rainfall predictability. Basic Appl Ecol 12:674–684

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Keiper FJ, McConchie R (2000) An analysis of genetic variation in natural populations of Sticherus flabellatus [(R. Br.) St John] using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9(5):571–582

    Article  PubMed  CAS  Google Scholar 

  • Kim SC, Lee C, Santos-Guerra A (2005) Genetic analysis and conservation of the endangered Canary Island woody sow-thistle, Sonchus gandogeri (Asteraceae). J Plant Res 118(2):147–153

    Article  PubMed  CAS  Google Scholar 

  • Kwak MM, Velterop O, van Andel J (1998) Pollen and gene flow in fragmented habitats. Appl Veg Sci 1:37–54

    Article  Google Scholar 

  • Lankau RA (2011) Conflicts in maintaining biodiversity at multiple scales. Mol Ecol 20(19):2035–2037

    Article  PubMed  Google Scholar 

  • Lauterbach D, Ristow M, Gemeinholzer B (2011) Genetic population structure, fitness variation and the importance of population history in remnant populations of the endangered plant Silene chlorantha EHRH. (Caryophyllaceae). Plant Biol 13(4):667–677

    Article  PubMed  CAS  Google Scholar 

  • Lauterbach D, Ristow M, Gemeinholzer B (2012) Population genetics and fitness in fragmented populations of the dioecious and endangered Spanish Catchfly (Silene otites). Plant Syst Evol 298(1):155–164

    Article  Google Scholar 

  • Leiss K, Müller-Schärer H (2001) Adaptation of Senecio vulgaris to ruderal and agricultural habitats. Am J Bot 88:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Mazor S (2006) Landscape change in the Southern Judean lowlands and the effect of patch attributes on species richness in semi-arid environment: embedding fuzzy logic in GIS. In: Department of Geography and Environmental Development. Ben-Gurion University, Beer Sheva

  • Michl T, Huck S, Schmitt T, Liebrich A, Haase P, Büdel B (2010) The molecular population structure of the tall forb Cicerbita alpina (Asteraceae) supports the idea of cryptic glacial refugia in central Europe. Bot J Linn Soc 164:142–154

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecol 83:1131–1145

    Article  Google Scholar 

  • Morandin LA, Winstona ML (2006) Pollinators provide economic incentive to preserve natural land in agroecosystems. Agric Ecosyst Environ 116(3–4):289–292

    Article  Google Scholar 

  • Muellner AN, Tremetsberger K, Stuessy T, Baeza CM (2005) Pleistocene refugia and recolonization routes in the southern Andes: insights from Hypochaeris palustris (Asteraceae, Lactuceae). Mol Ecol 14:203–212

    Article  PubMed  CAS  Google Scholar 

  • Naveh Z, Dan J (1973) The human degradation of Mediterranean landscapes in Israel. In: di Castri F, Mooney HA (eds) Mediterranean type ecosystems, origin and structure. Springer, New York, pp 370–390

    Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114

    Article  Google Scholar 

  • Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376

    Article  Google Scholar 

  • Poschlod P, Bakker JP, Kahmen S (2005) Changing land use and its impact on biodiversity. Basic Appl Ecol 6:93–98

    Article  Google Scholar 

  • Prinz K, Weising K, Hensen I (2009) Genetic structure of coastal and inland populations of the annual halophyte Suaeda maritima (L.) dumort. in Central Europe, inferred from amplified fragment length polymorphism markers. Plant Biol 11(6):812–820

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Ruiz de Clavijo E (1995) The ecological significance of fruit heteromorphism in the Amphicarpic species Catananche lutea (Asteraceae). Int J Plant Sci 156(6):824–833

    Article  Google Scholar 

  • Ruiz de Clavijo E, Jimenez MJ (1998) The influence of achene type and plant density on growth and biomass allocation in the heterocarpic annual Catananche lutea (Asteraceae). Int J Plant Sci 159(4):637–647

    Article  Google Scholar 

  • Stadler K, Koch M, Bernhardt KG, Greimler J (2010) Spatial arrangement and genetic structure in Gentianella aspera in a regional, local and temporal context. Plant Syst Evol 286:7–19

    Article  Google Scholar 

  • Svoray T, Mazor S, Pua B (2007) How is shrub cover related to soil moisture and patch geometry in the fragmented landscape of the Northern Negev desert? Landsc Ecol 22:105–116

    Article  Google Scholar 

  • Swofford DL (2003) PAUP* phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

  • Tero N, Aspi J, Siikamäki P, Jäkäläniemi A, Tuomi J (2003) Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Mol Ecol 12:2073–2085

    Article  PubMed  CAS  Google Scholar 

  • Tremetsberger K, Stuessy TF, Guo Y-P, Baeza CM, Weiss H, Samuel RM (2003) Amplified fragment length polymorphism (AFLP) variation within and among populations of Hypochaeris acaulis (Asteraceae) of Andean southern South America. Taxon 52:237–245

    Article  Google Scholar 

  • Turner ME, Stephens JC, Anderson WW (1982) Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. Proc Nat Acad Sci USA 79:203–207

    Article  PubMed  CAS  Google Scholar 

  • Vandepitte K, Roldán-Ruiz I, Leus L, Jacquemyn H, Honnay O (2009) Canopy closure shapes clonal diversity and fine-scale genetic structure in the dioecious understorey perennial Mercurialis perennis. J Ecol 97:404–414

    Article  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium

  • Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8:767–781

    Article  Google Scholar 

  • Venable DL, Brown JS (1988) The selective interactions of dispersal, dormancy and seed size as adaptations for reducing risks in variable environments. Am Nat 131:360–384

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 4. University of Chicago Press, Chicago

    Google Scholar 

  • Yaacobi G, Ziv Y, Rosenzweig ML (2007) Habitat fragmentation may not matter to species diversity. Proc R Soc B 274:2409–2412

    Article  PubMed  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Friends of the Botanic Garden Berlin-Dahlem, for financial support, and Itamar Giladi and Yaron Ziv, Beersheva, for their hospitality and support and for the various discussions on plants and landscape of the study site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gemeinholzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gemeinholzer, B., May, F., Ristow, M. et al. Strong genetic differentiation on a fragmentation gradient among populations of the heterocarpic annual Catananche lutea L. (Asteraceae). Plant Syst Evol 298, 1585–1596 (2012). https://doi.org/10.1007/s00606-012-0661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0661-1

Keywords

Navigation