Skip to main content

Advertisement

Log in

Random ball-polyhedra and inequalities for intrinsic volumes

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We prove a randomized version of the generalized Urysohn inequality relating mean width to the other intrinsic volumes. To do this, we introduce a stochastic approximation procedure that sees each convex body K as the limit of intersections of Euclidean balls of large radii and centered at randomly chosen points. The proof depends on a new isoperimetric inequality for the intrinsic volumes of such intersections. If the centers are i.i.d. and sampled according to a bounded continuous distribution, then the extremizing measure is uniform on a Euclidean ball. If one additionally assumes that the centers have i.i.d. coordinates, then the uniform measure on a cube is the extremizer. We also discuss connections to a randomized version of the extended isoperimetric inequality and symmetrization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrus, G., Kevei, P., Vígh, V.: The diminishing segment process. Stat. Probab. Lett. 82(1), 191–195 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis. Part I, Mathematical Surveys and Monographs, vol. 202. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  3. Ball, K.: Convex Geometry and Functional Analysis, Handbook of the Geometry of Banach Spaces, vol. I, pp. 161–194. North-Holland, Amsterdam (2001)

    MATH  Google Scholar 

  4. Barthe, F.: Mesures unimodales et sections des boules \(B^n_p\). C. R. Acad. Sci. Paris Sér. I Math. 321(7), 865–868 (1995)

    MathSciNet  Google Scholar 

  5. Barthe, F.: Extremal properties of central half-spaces for product measures. J. Funct. Anal. 182(1), 81–107 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezdek, K.: Lectures on Sphere Arrangements—the Discrete Geometric Side, Fields Institute Monographs, vol. 32. Springer, New York (2013) (Fields Institute for Research in Mathematical Sciences, Toronto)

  7. Bezdek, K., Lángi, Z., Naszódi, M., Papez, P.: Ball-polyhedra. Discrete Comput. Geom. 38(2), 201–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski inequality. Adv. Math. 231(3–4), 1974–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Böröczky, K.J., Schneider, R.: The mean width of circumscribed random polytopes. Can. Math. Bull. 53(4), 614–628 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brascamp, H.J., Lieb, E.H., Luttinger, J.M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17, 227–237 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Busemann, H.: Volume in terms of concurrent cross-sections. Pacific J. Math. 3, 1–12 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campi, S., Gronchi, P.: Extremal convex sets for Sylvester–Busemann type functionals. Appl. Anal. 85(1–3), 129–141 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christ, M.: Estimates for the \(k\)-plane transform. Indiana Univ. Math. J. 33(6), 891–910 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cordero-Erausquin, D., Fradelizi, M., Paouris, G., Pivovarov, P.: Volume of the polar of random sets and shadow systems. Math. Ann. 362(3–4), 1305–1325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Csikós, B.: On the volume of the union and intersection of random balls. Audio talk and slides available at https://www.fields.utoronto.ca/audio/11-12/wksp_sphere/csikos

  16. Figiel, T., Tomczak-Jaegermann, N.: Projections onto Hilbertian subspaces of Banach spaces. Israel J. Math. 33(2), 155–171 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fodor, F., Kevei, P., Vígh, V.: On random disc polygons in smooth convex discs. Adv. Appl. Probab. 46(4), 899–918 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gorbovickis, I.: Strict Kneser–Poulsen conjecture for large radii. Geom. Dedicata 162, 95–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Groemer, H.: On the mean value of the volume of a random polytope in a convex set. Arch. Math. (Basel) 25, 86–90 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gross, W.: Über affine geometrie xiii, eine minimumeigenshaft der ellipse und des ellipsoids. Leipziger Berichte 70, 38–54 (1918)

    Google Scholar 

  21. Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957)

    Book  MATH  Google Scholar 

  22. Hartzoulaki, M., Paouris, G.: Quermassintegrals of a random polytope in a convex body. Arch. Math. (Basel) 80(4), 430–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kanazawa, A.: On the minimal volume of simplices enclosing a convex body. Arch. Math. (Basel) 102(5), 489–492 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kanter, M.: Unimodality and dominance for symmetric random vectors. Trans. Am. Math. Soc. 229, 65–85 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  26. Lutwak, E., Zhang, G.: Blaschke–Santaló inequalities. J. Differ. Geom. 47(1), 1–16 (1997)

    MATH  Google Scholar 

  27. Macbeath, A.M.: An extremal property of the hypersphere. Proc. Camb. Philos. Soc. 47, 245–247 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  28. Paouris, G., Pivovarov, P.: A probabilistic take on isoperimetric-type inequalities. Adv. Math. 230(3), 1402–1422 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Paouris, G., Pivovarov, P.: Small-ball probabilities for the volume of random convex sets. Discrete Comput. Geom. 49(3), 601–646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pfiefer, R.E.: The extrema of geometric mean values. ProQuest LLC, Ann Arbor (1982). Thesis (Ph.D.), University of California, Davis

  31. Pfiefer, R.E.: The historical development of J. J. Sylvester’s four point problem. Math. Mag. 62(5), 309–317 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pisier, G.: Holomorphic semigroups and the geometry of Banach spaces. Ann. Math. (2) 115(2), 375–392 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rogers, C.A.: A single integral inequality. J. London Math. Soc. 32, 102–108 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rogers, C.A., Shephard, G.C.: Some extremal problems for convex bodies. Mathematika 5, 93–102 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schneider, R.: Eine allgemeine Extremaleigenschaft der Kugel. Monatsh. Math. 71, 231–237 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, expanded ed., Encyclopedia of Mathematics and its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

  37. Schuster, F.E., Weberndorfer, M.: Volume inequalities for asymmetric Wulff shapes. J. Differ. Geom. 92(2), 263–283 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

It is our pleasure to thank Rolf Schneider for helpful correspondence. We also thank Beatrice-Helen Vritsiou for helpful comments on a previous draft of this paper. Lastly, we thank the anonymous referee for careful reading and comments which improved the results and presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pivovarov.

Additional information

Communicated by A. Constantin.

Grigoris Paouris is supported by the A. Sloan Foundation, US NSF Grant CAREER-1151711 and BSF Grant 2010288. This work was partially supported by a Grant from the Simons Foundation (#317733 to Peter Pivovarov).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paouris, G., Pivovarov, P. Random ball-polyhedra and inequalities for intrinsic volumes. Monatsh Math 182, 709–729 (2017). https://doi.org/10.1007/s00605-016-0961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-016-0961-6

Keywords

Mathematics Subject Classification

Navigation