Skip to main content
Log in

\(\varvec{L}^{\varvec{1}}\)-Norm of Steinhaus chaos on the polydisc

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let \(J_n\subset [1,n]\), \(n=1,2,\ldots \) be increasing sets of mutually coprime numbers. Under reasonable conditions on the coefficient sequence \(\{c^j_n\}_{n,j}\), we show that

$$\begin{aligned} \lim _{T\rightarrow \infty }\frac{1}{T} \int _{0}^T \left| \sum _{j\in J_n} c^j_n\,j^{it}\right| \mathrm{d}t\sim \left( \frac{\pi }{2}\sum _{j\in J_n} (c^j_n)^2\right) ^{1/2} \end{aligned}$$

as \(n\rightarrow \infty \). We also show by means of an elementary device that for all \(0<{\alpha }<2\),

$$\begin{aligned} \lim _{T\rightarrow \infty } \left( \frac{1}{T} \int _{0}^T \left| \sum _{n=1}^N n^{-it}\right| ^{\alpha }\mathrm{d}t\right) ^{1/{\alpha }} \ge C_{\alpha }\, \frac{ N^{\frac{1}{2}}}{\big ( \log N\big )^{{\frac{1}{{\alpha }} -\frac{1}{2} }}}. \end{aligned}$$

the proof uses Ayyad, Cochrane and Zheng estimate on the number of solutions of the equation \(x_1x_2=x_3x_4\). In the case \({\alpha }=1\), this approaches Helson’s bound up to a factor \((\log N)^{1/4}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayyad, A., Cochrane, T., Zheng, Z.: The congruence \(x_1x_2\equiv x_3x_4\) (mod \(p\)), the equation \(x_1x_2=x_3x_4\), and mean values of character sums. J. Number Theory 59, 398–413 (1996)

    Article  MathSciNet  Google Scholar 

  2. Berkes, I.: On almost i.i.d. subsequences of the trigonometric system. In: Functional Analysis (Austin, TX, 1986–1987), Lecture Notes in Mathematics, vol. 1332, pp. 54–63. Springer, Berlin (1988)

  3. Helson, H.: Hankel forms. Stud. Math. 198(1), 79–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kallenberg, O.: Foundations of Modern Probability Theory. Springer, New-York (1997)

    MATH  Google Scholar 

  5. König, H.: On the best constants in the Khintchine inequality for Steinhaus random variables. Isr. J. Math. 203(1), 23–57 (2014)

  6. Montgomery, H.L.: Ten lectures on the interface between analytic number theory and harmonic analysis. In: CMBS Regional Conference Series in Mathematics, vol. 84. AMS with support from the NSF (1994)

  7. Wilson, B.M.: Proofs of some formulae enunciated by Ramanujan. Proc. Lond. Math. Soc. 21(2), 235–255 (1922)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel J. G. Weber.

Additional information

Communicated by P. Friz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, M.J.G. \(\varvec{L}^{\varvec{1}}\)-Norm of Steinhaus chaos on the polydisc. Monatsh Math 181, 473–483 (2016). https://doi.org/10.1007/s00605-015-0843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0843-3

Keywords

Mathematics Subject Classification

Navigation