Skip to main content
Log in

On the Weyl solution of the 1-dim Schrödinger operator with inverse fourth power potential

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider the one dimensional Schrödinger operator with potential \(1/x^4\) on the half line. It is known that a generalized Titchmarsh–Weyl function can be associated to it. For other strongly singular potentials in some previous works it was possible to give an operator theoretic interpretation of this fact. However, for the present potential we show that such an interpretation does not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bühring, W.: Schrödinger equation with inverse fourthpower potential, a differential equation with two irregular singular points. J. Math. Phys. 15, 1451–1459 (1974)

    Article  MATH  Google Scholar 

  2. Brunnhuber, R., Eckhardt, J., Kostenko, A., Teschl, G.: Singular Weyl–Titchmarsh–Kodaira theory for one-dimensional Dirac operators. Monatsh. Math. 174, 515–547 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Davies, E.B.: Singular Schrödinger operators in one dimension. Mathematika 59, 141–159 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dijksma, A., Shondin, Yu.: Singular point-like perturbations of the Bessel operator in a Pontryagin space. J. Differ. Equ. 164, 49–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eckhardt, J., Gesztesy, F., Nichols, R., Teschl, G.: Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials. Opusc. Math. 33, 467–563 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eckhardt, J., Teschl, G.: Sturm–Liouville operators with measure-valued coefficients. J. d’Analyse Math. 120, 151-224 (2013a)

  7. Eckhardt, J., Teschl, G.: Singular Weyl–Titchmarsh–Kodaira theory for Jacobi operators. Oper. Matrices 7, 695–712 (2013b)

  8. Fulton, C.: Titchmarsh–Weyl \(m\)-functions for second-order Sturm–Liouville problems with two singular endpoints. Mathematische Nachr. 281(10), 1418–1475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fulton, C., Langer, H.: Sturm–Liouville operators with singularities and generalized Nevanlinna functions. Complex Anal. Oper. Theory. 4(2), 179–243 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fulton, C., Langer, H., Luger, A.: Mark Krein’s method of directing functionals and singular potentials. Math. Nachr. 285, 1791–1798 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gesztesy, F., Zinchenko, M.: On spectral theory for Schrödinger operators with strongly singular potentials. Mathematische Nachr. 279(9–10), 1041–1082 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ince, E.L.: Ordinary Differential Equations. Dover Publications, New York (1956)

    MATH  Google Scholar 

  13. Kostenko, A., Sakhnovich, A., Teschl, G.: Weyl–Titchmarsh theory for Schrödinger operators with strongly singular potentials. Int. Math. Res. Not. 2012(8), 1699–1747 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Kostenko, A., Teschl, G.: On the singular Weyl–Titchmarsh function of perturbed spherical Schrödinger operators. J. Differ. Equ. 250, 3701–3739 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kostenko, A., Teschl, G.: Spectral asymptotics for perturbed spherical Schrödinger operators and applications to quantum scattering. Commun. Math. Phys. 322, 255–275 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurasov, P.: \({\cal {H}}_{-n}\)-perturbations of self-adjoint operators and Krein’s resolvent formula. Integral Equ. Oper. Theory. 45(4), 437–460 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurasov, P.: Singular and supersingular perturbations: Hilbert space methods. Contemp. Math. 340, 185–216 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurasov, P.: Triplet extensions I: semibounded operators in the scale of Hilbert spaces. J. Anal. Math. 107, 251–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kurasov, P., Luger, A.: An operator theoretic interpretation of the generalized Titchmarsh–Weyl coefficient for a singular Sturm–Liouville problem. Math. Phys. Anal. Geom. 14(2), 115–151 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Langer, M., Woracek, H.: Direct and inverse spectral theorems for a class of canonical systems with two singular endpoints. ASC report 18/2015, TU Wien (2015)

  21. Luger, A., Neuner, C.: An operator theoretic interpretation of the singular Titchmarsh–Weyl function for perturbed spherical Schrödinger operators. to appear in: Complex Anal. Oper. Theory. doi:10.1007/s11785-014-0425-8

  22. Poincaré, H.: Sur les intégrales irrégulières des équations linéaires. Acta Math. 8, 295–344 (1886)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I–IV. Academic Press, New York (1972–1978)

  24. Spector, R.M.: Exact solution of the Schrödinger equation for inverse fourth-power potential. J. Math. Phys. 5, 1185–1189 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thomé, L.W.: Zur Theorie der linearen Differentialgleichungen. J. für Mathematik 95, 44–98 (1883)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to Fritz Gesztesy for pointing out the reference [24] that directed us in the right direction. Moreover, we thank the Institute Mittag-Leffler for its hospitality during the workshop “Modern aspects of the Titchmarsh–Weyl m-function and its multidimensional analogues” in June 2014, including access to the library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Neuner.

Additional information

Communicated by G. Teschl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luger, A., Neuner, C. On the Weyl solution of the 1-dim Schrödinger operator with inverse fourth power potential. Monatsh Math 180, 295–303 (2016). https://doi.org/10.1007/s00605-015-0826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0826-4

Keywords

Mathematics Subject Classification

Navigation