Skip to main content
Log in

The n-point correlation of quadratic forms

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we investigate the distribution of the set of values of a quadratic form Q, at integral points. In particular we are interested in the n-point correlations of the this set. The asymptotic behaviour of the counting function that counts the number of n-tuples of integral points \(\left( v_{1},\ldots ,v_{n}\right) \), with bounded norm, such that the \(n-1\) differences \(Q\left( v_{1}\right) -Q\left( v_{2}\right) ,\ldots Q\left( v_{n-1}\right) -Q\left( v_{n}\right) \), lie in prescribed intervals is obtained. The results are valid provided that the quadratic form has rank at least 5, is not a multiple of a rational form and n is at most the rank of the quadratic form. For certain quadratic forms satisfying Diophantine conditions we obtain a rate for the limit. The proofs are based on those in the recent preprint (Distribution of values of quadratic forms at integral points. http://www.math.uni-bielefeld.de/sfb701/files/preprints/sfb13003.pdf, 2013) of Götze and Margulis, in which they prove an ‘effective’ version of the Oppenheim conjecture. In particular, the proofs rely on Fourier analysis and estimates for certain theta series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berry, M.V., Tabor, M.: Level clustering in the regular spectrum. Proc. R. Soc. Lond. A Math. Phys. Sci. 356(1686), 375–394 (1977)

  2. Dani, S.G., Margulis, G.A.: Values of quadratic forms at primitive integral points. Invent. Math. 98(2), 405–424 (1989). MR1016271 (90k:22013b)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dani, S.G., Margulis, G.A.: Limit distributions of orbits of unipotent flows and values of quadratic forms. I. M. Gel’fand Seminar, Adv. Soviet Math., vol. 16, pp. 91–137. Amer. Math. Soc., Providence (1993). MR1237827 (95b:22024)

  4. Eskin, A., Margulis, G., Mozes, S.: Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture. Ann. Math. (2) 147(1), 93–141 (1998). MR1609447 (99a:11043)

  5. Eskin, A., Margulis, G., Mozes, S.: Quadratic forms of signature (2,2) and eigenvalue spacings on rectangular 2-tori. Ann. Math. (2) 161(2), 679–725 (2005). MR2153398 (2006g:11076)

  6. Götze, F., Margulis, G.A.: Distribution of values of quadratic forms at integral points. (2010, ArXiv e-prints). arXiv:1004.5123

  7. Götze, F., Margulis, G.A.: Distribution of values of quadratic forms at integral points. http://www.math.uni-bielefeld.de/sfb701/files/preprints/sfb13003.pdf (2013)

  8. Grafakos, L.: Classical Fourier analysis. 2nd edn. Graduate texts in mathematics, vol. 249. Springer, New York (2008). MR 2445437 (2011c:42001)

  9. Margulis, G.A.: Discrete subgroups and ergodic theory, Number theory, trace formulas and discrete groups (Oslo, 1987), pp. 377–398. Academic Press, Boston (1989). MR 993328 (90k:22013a)

  10. Marklof, J.: Pair correlation densities of inhomogeneous quadratic forms. II. Duke Math. J. 115(3), 409–434 (2002). MR 1940408 (2004f:11110a)

    Article  MATH  MathSciNet  Google Scholar 

  11. Müller, W.: Systems of quadratic Diophantine inequalities and the value distribution of quadratic forms. Monatsh. Math. 153(3), 233–250 (2008). MR 2379669 (2009a:11081)

    Article  MATH  MathSciNet  Google Scholar 

  12. Müller, W.: On the value distribution of positive definite quadratic forms. Monatsh. Math. 162(1), 69–88 (2011). MR 2747345 (2012c:11085)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sarnak, P.: Values at integers of binary quadratic forms, harmonic analysis and number theory (Montreal, PQ, 1996). CMS Conf. Proc., vol. 21, pp. 181–203. Amer. Math. Soc., Providence (1997). MR 1472786 (98j:11024)

  14. VanderKam, J.M.: Pair correlation of four-dimensional flat tori. Duke Math. J. 97(2), 413–438 (1999). MR1682221 (2000i:11062b)

    Article  MATH  MathSciNet  Google Scholar 

  15. VanderKam, J.M.: Correlations of eigenvalues on multi-dimensional flat tori. Commun. Math. Phys. 210(1), 203–223 (2000). MR 1748175 (2002a:58033)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Sargent.

Additional information

Communicated by S. G. Dani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargent, O. The n-point correlation of quadratic forms. Monatsh Math 178, 259–297 (2015). https://doi.org/10.1007/s00605-015-0817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0817-5

Keywords

Mathematics Subject Classification

Navigation