Skip to main content
Log in

On the cardinality and complexity of the set of codings for self-similar sets with positive Lebesgue measure

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let \(\lambda _{1},\ldots ,\lambda _{n}\) be real numbers in \((0,1)\) and \(p_{1},\ldots ,p_{n}\) be points in \(\mathbb {R}^{d}\). Consider the collection of maps \(f_{j}:\mathbb {R}^{d}\rightarrow \mathbb {R}^{d} \) given by

$$\begin{aligned} f_{j}(x)=\lambda _{j} x +\left( 1-\lambda _{j}\right) p_{j}. \end{aligned}$$

It is a well known result that there exists a unique nonempty compact set \(\Lambda \subset \mathbb {R}^{d}\) satisfying \(\Lambda =\cup _{j=1}^{n} f_{j}(\Lambda ).\) Each \(x\in \Lambda \) has at least one coding, that is a sequence \((\epsilon _{i})_{i=1}^{\infty }\in \{1,\ldots ,n\}^{\mathbb {N}}\) that satisfies \(\lim _{N\rightarrow \infty }f_{\epsilon _{1}}\ldots f_{\epsilon _{N}} (0)=x.\) We study the size and complexity of the set of codings of a generic \(x\in \Lambda \) when \(\Lambda \) has positive Lebesgue measure. In particular, we show that under certain natural conditions almost every \(x\in \Lambda \) has a continuum of codings. We also show that almost every \(x\in \Lambda \) has a universal coding. Our work makes no assumptions on the existence of holes in \(\Lambda \) and improves upon existing results when it is assumed \(\Lambda \) contains no holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama, S., Komornik, V.: Discrete spectra and pisot numbers. J. Number Theory 133(2), 375–390 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Broomhead, D., Montaldi, J., Sidorov, N.: Golden Gaskets: Variations on the Sierpiński Sieve. Nonlinearity 17(4), 1455–1480 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dajani, K., de Vries, M.: Invariant densities for random \(\beta \)- expansions. J. Eur. Math. Soc. 9(1), 157–176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dajani, K., Kalle, C.: Random \(\beta \)- expansions with deleted digits. Discrete Contin. Dyn. Syst. 18(1), 199–217 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Daróczy, Z., Katai, I.: Univoque sequences. Publ. Math. Debrecen 42, 397–407 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Erdős, P., Joó, I., Komornik, V.: Characterization of the unique expansions \(1 =\sum _{i=1}^{\infty }q^{-n_{i}}\) and related problems. Bull. Soc. Math. Fr. 118, 377–390 (1990)

    Google Scholar 

  7. Erdős, P., Komornik, V.: Developments in non-integer bases. Acta Math. Hungar. 79(1–2), 57–83 (1998)

    Article  MathSciNet  Google Scholar 

  8. Falconer, K.: Mathematical foundations and applications, p. 368. Wiley, Chichester (2014). (ISBN: 978-1-119-94239-9 28-01)

    MATH  Google Scholar 

  9. Falconer, K.: The Hausdorff dimension of some fractals and attractors of overlapping construction. J. Statist. Phys. 47(1–2), 123–132 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feng, D.J.: On the topology of polynomials with bounded integer coefficients. arXiv:1109.1407 [math.NT]

  11. Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer bases. Math. Res. Letters 8, 535–543 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jordan, T., Pollicott, M.: Properties of measures supported on fat Sierpinski carpets. Ergodic Theory Dynam. Syst. 26(3), 739–754 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Keane, M., Smorodinsky, M., Solomyak, B.: On the morphology of \(\gamma \)- expansions with deleted digits. Trans. Amer. Math. Soc. 347(3), 955–966 (1995)

    MATH  MathSciNet  Google Scholar 

  15. Kigami, J.: Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge, p. 226. ISBN: 0-521-79321-1 (2001)

  16. Komornik, V., Lai, A.C., Pedicini, M.: Generalized golden ratios of ternary alphabets. J. Eur. Math. Soc. (JEMS) 13(4), 1113–1146 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Komornik, V., Loreti, P.: Unique developments in non-integer bases. Amer. Math. Monthly 105(7), 636–639 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Parry, W.: On the \(\beta \)- expansions of real numbers. Acta Math. Acad. Sci. Hung. 11, 401–416 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pedicini, M.: Greedy expansions and sets with deleted digits. Theoret. Comput. Sci. 332(1–3), 313–336 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pollicott, M., Simon, K.: The Hausdorff dimension of \(\lambda \)- expansions with deleted digits. Trans. Amer. Math. Soc. 347(3), 967–983 (1995)

    MATH  MathSciNet  Google Scholar 

  21. Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8, 477–493 (1957)

    Article  MATH  Google Scholar 

  22. Sidorov, N.: Almost every number has a continuum of \(\beta \)- expansions. Amer. Math. Monthly 110(9), 838–842 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sidorov, N.: Combinatorics of linear iterated function systems with overlaps. Nonlinearity 20(5), 1299–1312 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sidorov, N.: Universal \(\beta \)- expansions. Period. Math. Hungar. 47, 221–231 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Simon, K., Solomyak, B.: On the dimension of self-similar sets. Fractals 10(1), 59–65 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Solomyak, B.: Notes on Bernoulli convolution. Proc. Symp. Pure Math. 72(1), 207–230 (2004) (American Mathematical Society)

Download references

Acknowledgments

The author would like to thank Tom Kempton and Nikita Sidorov for useful discussions. This work was supported by the Dutch Organisation for Scientic Research (NWO) Grant Number 613.001.022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Baker.

Additional information

Communicated by H. Bruin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, S. On the cardinality and complexity of the set of codings for self-similar sets with positive Lebesgue measure. Monatsh Math 179, 1–13 (2016). https://doi.org/10.1007/s00605-015-0755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0755-2

Keywords

Mathematics Subject Classification

Navigation