Skip to main content
Log in

Abstract

Let \(\mathfrak{g }\) be a Lie algebra, \(E\) a vector space containing \(\mathfrak{g }\) as a subspace. The paper is devoted to the extending structures problem which asks for the classification of all Lie algebra structures on \(E\) such that \(\mathfrak{g }\) is a Lie subalgebra of \(E\). A general product, called the unified product, is introduced as a tool for our approach. Let \(V\) be a complement of \(\mathfrak{g }\) in \(E\): the unified product \(\mathfrak{g } \,\natural \, V\) is associated to a system \((\triangleleft , \, \triangleright , \, f, \{-, \, -\})\) consisting of two actions \(\triangleleft \) and \(\triangleright \), a generalized cocycle \(f\) and a twisted Jacobi bracket \(\{-, \, -\}\) on \(V\). There exists a Lie algebra structure \([-,-]\) on \(E\) containing \(\mathfrak{g }\) as a Lie subalgebra if and only if there exists an isomorphism of Lie algebras \((E, [-,-]) \cong \mathfrak{g } \,\natural \, V\). All such Lie algebra structures on \(E\) are classified by two cohomological type objects which are explicitly constructed. The first one \(\mathcal{H }^{2}_{\mathfrak{g }} (V, \mathfrak{g })\) will classify all Lie algebra structures on \(E\) up to an isomorphism that stabilizes \(\mathfrak{g }\) while the second object \(\mathcal{H }^{2} (V, \mathfrak{g })\) provides the classification from the view point of the extension problem. Several examples that compute both classifying objects \(\mathcal{H }^{2}_{\mathfrak{g }} (V, \mathfrak{g })\) and \(\mathcal{H }^{2} (V, \mathfrak{g })\) are worked out in detail in the case of flag extending structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. As usually, we define the bracket only in the points where the values are non-zero.

References

  1. Agore, A.L., Militaru, G.: Extending structures I: the level of groups, Algebr. Represent. Theory, arXiv:1011.1633. doi:10.1007/s10468-013-9420-4

  2. Agore, A.L., Militaru, G.: Extending structures II: the quantum version. J. Algebra 336, 321–341 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alekseevsky, D., Michor, P.W., Ruppert, W.: Extensions of Lie algebras. Unpublished. ESI, Preprint 881. arXiv:math.DG/0005042

  4. Alekseevsky, D., Michor, P.W., Ruppert, W.: Extensions of super Lie algebras. J. Lie Theory 15, 125–134 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Andrada, A., Salamon, S.: Complex product structures on Lie algebras. Forum Math. 17, 261–295 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Andrada, A., Barberis, M.L., Dotti, I.G., Ovando, G.P.: Product structures on four dimensional solvable Lie algebras. Homol. Homot. Appl. 7, 9–37 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benayadi, S.: Structure of perfect Lie algebras without center and outer derivation. Annales de la faculte de Science de Toulouse 5, 203–231 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourbaki, N.: Lie Groups and Lie Algebres, Chap. 1–3, Springer, Paris (1989)

  9. Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc. 63, 85–124 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  10. Erdmann, K., Wildon, M.J.: Introduction to Lie Algebras. Springer, London (2006)

    MATH  Google Scholar 

  11. Farnsteiner, R.: On the cohomology of associative algebras and Lie algebras. Proc. AMS 99, 415–420 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. de Graaf, W.A.: Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. J. Algebra 309, 640–653 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hu, N., Pei, Y., Liu, D.: A cohomological characterization of Leibniz central extensions of Lie algebras. Proc. AMS 136, 437–447 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Humphreys, J.E.: Introducution to Lie algebras and Representation theory. Spinger, New York (1972)

    Book  Google Scholar 

  15. Kassel, C.: Quantum groups, Graduate Texts in Mathematics 155. Springer-Verlag, New York (1995)

    Google Scholar 

  16. Lecomte, P.: Sur la suite exacte canonique asociée à un fibrè principal. Bul. Soc. Math. France 13, 259–271 (1985)

    MathSciNet  Google Scholar 

  17. Lu, J.H., Weinstein, A.: Poisson Lie groups, dressing transformations and Bruhat decompositions. J. Differ. Geom. 31, 501–526 (1990)

    Google Scholar 

  18. Ovando, G.: Four dimensional symplectic Lie algebras. Beiträge zur Algebra und Geometrie 47, 419–434 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Majid, S.: Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130, 17–64 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Majid, S.: Foundations of quantum groups theory. Cambridge University Press, London (1995)

    Book  Google Scholar 

  21. Michor, P.W.: Knit products of graded Lie algebras and groups. In: Proceedings of the Winter School on Geometry and Physics (Srní, 1989). Rend. Circ. Mat. Palermo (2) Suppl. No. 22, pp. 171–175 (1990). arXiv:math.GR/9204220

  22. Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras. Comm. Algebra 9, 841–882 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zusmanovich, P.: Central extensions of current algebras. Trans. AMS 334, 143–152 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Agore.

Additional information

Communicated by A. Cap.

A. L. Agore is research fellow “Aspirant” of FWO-Vlaanderen. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, Grant No. 88/05.10.2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agore, A.L., Militaru, G. Extending structures for Lie algebras. Monatsh Math 174, 169–193 (2014). https://doi.org/10.1007/s00605-013-0537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-013-0537-7

Keywords

Mathematics Subject Classification (2010)

Navigation