Skip to main content
Log in

Multiplicity of solutions for differential inclusion problems in \({\mathbb{R}^N}\) involving the p(x)-Laplacian

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we consider the differential inclusion problem in \({\mathbb{R}^N}\) involving the p(x)-Laplacian of the type

$$ -\triangle_{p(x)} u+V(x)|u|^{p(x)-2}u\in \partial F(x,u)\,\,\,{\rm in}\, \mathbb{R}^N. $$

The approach used in this paper is the variational method for locally Lipschitz functions. More precisely, based on the Weirstrass Theorem and Mountain Pass Theorem, we get there exist at least two nontrivial solutions. We also establish a Bartsch–Wang type compact embedding theorem for variable exponent spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kungching C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  MathSciNet  Google Scholar 

  2. Ricceri B.: A general variational principle and some of its applications. J. Comput. Appl. Math. 113, 401–410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Marano S., Motreanu D.: Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian. J. Diff. Equ. 182, 108–120 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kristály A.: Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}^N}\) . J. Diff. Equ. 220, 511–530 (2006)

    Article  Google Scholar 

  5. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1993)

    Google Scholar 

  6. Alves C.O., Shibo L.: On superlinear p(x)-Laplacian equations in \({\mathbb{R}^N}\) . Nonlinear Anal. TMA 73, 2566–2579 (2010)

    Article  MATH  Google Scholar 

  7. Guowei D.: Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}^N}\) involving the p(x)-Laplacian. Nonlinear Anal. TMA 71, 1116–1123 (2009)

    Article  MATH  Google Scholar 

  8. Bin G., Xiaoping X., Qingmei Z.: The existence of radial solutions for differential inclusion problems in \({\mathbb{R}^N}\) involving the p(x)-Laplacian. Nonlinear Anal. TMA 73, 622–633 (2010)

    Article  MATH  Google Scholar 

  9. Harjulehto P., Hästö P., Latvala V.: Minimizers of the variable exponent, non-uniformly convex Dirichlet energy. J. Math. Pure Appl. 89, 174–197 (2008)

    MATH  Google Scholar 

  10. Yunmei C., Levine S., Murali R.: Variable exponent linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Antontsev S.N., Rodrigues J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52, 19–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Antontsev S.N., Shmarev S.I.: A model porous medium equation with variable exponent of nonlinearity: Existence uniqueness and localization properties of solutions. Nonlinear Anal. TMA 60, 515–545 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Edmunds D., Rákosník J.: Sobolev embedding with variable exponent. Studia Math. 143, 267–293 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Xianling F., Jishen S., Dun Z.: Sobolev embedding theorems for spaces \({W^{k,p(x)}(\Omega )}\) . J. Math. Anal. Appl. 262, 749–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kovacik O., Rakosuik J.: On spaces \({L^{p(x)}(\Omega)}\) and \({W^{k,p(x)}(\Omega)}\) . Czechoslovak. Math. J. 41, 592–618 (1991)

    MathSciNet  Google Scholar 

  16. Xianling F., Dun Z.: On the spaces \({L^{p(x)}(\Omega)}\) and \({W^{m,p(x)}(\Omega)}\) . J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xianling F., Qihu Z.: Existence of solutions for p(x)-laplacian Dirichlet problem. Nonlinear Anal. TMA. 52, 1843–1853 (2003)

    Article  MATH  Google Scholar 

  18. Kungching C.: Critical Point Theory and Applications. Shanghai Scientific and Technology Press, Shanghai (1996)

    Google Scholar 

  19. Kourogenic N., Papageorgiou N.S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Aust. Math. Soc. 69(A), 245–271 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ge.

Additional information

Communicated by Adrian Constantin.

This work is supported by the National Science Found of China (Grand. 10971043,11001063), the Fundamental Research Funds for the Central Universities (No. HEUCF 20111134), China Postdoctoral Science Foundation Funded Project (No. 20110491032), Heilongjiang Provincial Science Foundation for distinguished young scholars (JC200810), Program of excellent team in Harbin Institute of Technology and the Natural Science Foundation of Heilongjiang province (No. A200803).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, B., Zhou, QM. & Xue, XP. Multiplicity of solutions for differential inclusion problems in \({\mathbb{R}^N}\) involving the p(x)-Laplacian. Monatsh Math 168, 363–380 (2012). https://doi.org/10.1007/s00605-011-0342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-011-0342-0

Keywords

Mathematics Subject Classification (2000)

Navigation