Skip to main content

Advertisement

Log in

Impedimetric sensing of temperature and humidity by using organic-inorganic nanocomposites composed of chitosan and a CuO-Fe3O4 nanopowder

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An organic-inorganic nanocomposites composed of chitosan and CuO-Fe3O4 nanopowder with a particle size of 30 ± 10 nm was synthesized and used to prepare sensors pellets of 10 mm i.d. and a thickness of 1 ± 0.1 mm under pressures between of 187 to 565 MPa. A silver paste was deposited on the pellets to introduce electrodes. It is found that the impedance of the material changes with relative humidity (RH) by up to −819.4 kΩ·%−1 RH, and with temperature by up to −378.0 kΩ·°C−1. Response and recovery times for humidity sensing are 20 s and 50 s, correspondingly. The sensor works best in the 20–80 °C temperature range and covers the complete RH range.

Schematic presentation of the chitosan-CuO-Fe3O4 nanopowder used to prepare sensors pellets (10 mm diameter, 1 ± 0.1 mm thickness) under pressure of 187–565 MPa. The change of impedance is up to −819.4 kΩ·%−1 RH and −378.0kΩ °C−1, respectively for humidity and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farahani H, Wagiran R, Hamidon M (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881

    Article  Google Scholar 

  2. Wang X-d, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42:7834–7869

    Article  CAS  Google Scholar 

  3. Hsueh HT, Hsueh TJ, Chang SJ, Hung FY, Tsai TY, Weng WY et al (2011) CuO nanowire-based humidity sensors prepared on glass substrate. Sensors Actuators B Chem 156:906–911

    Article  CAS  Google Scholar 

  4. Chani MTS, Karimov KS, Khan SB, Asiri AM (2016) Fabrication and investigation of cellulose acetate-copper oxide nano-composite based humidity sensors. Sens Actuators A 246:58–65

    Article  CAS  Google Scholar 

  5. Su P-G, Huang L-N (2007) Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sensors Actuators B Chem 123:501–507

    Article  CAS  Google Scholar 

  6. Qi Q, Zhang T, Zeng Y, Yang H (2009) Humidity sensing properties of KCl-doped cu–Zn/CuO–ZnO nanoparticles. Sensors Actuators B Chem 137:21–26

    Article  Google Scholar 

  7. Blank TA, Eksperiandova LP, Belikov KN (2016) Recent trends of ceramic humidity sensors development: a review. Sensors Actuators B Chem 228:416–442

    Article  CAS  Google Scholar 

  8. Wang HY, Li XJ (2005) Structural and capacitive humidity sensing properties of nanocrystal magnetite/silicon nanoporous pillar array. Sensors Actuators B Chem 110:260–263

    Article  CAS  Google Scholar 

  9. Chen LH, Li T, Chan CC, Menon R, Balamurali P, Shaillender M et al (2012) Chitosan based fiber-optic Fabry–Perot humidity sensor. Sensors Actuators B Chem 169:167–172

    Article  CAS  Google Scholar 

  10. Chani MTS, Khan SB, Karimov KS, Asiri AM, Akhtar K, Arshad MN (2015) Synthesis and pressure sensing properties of the pristine cobalt oxide Nanopowder. Int J Electrochem Sci 10:10433–10444

    CAS  Google Scholar 

  11. Khan SB, Chani MTS, Karimov KS, Asiri AM, Mehran B, Rana T (2014) Humidity and temperature sensing properties of copper oxide–Si-adhesive nanocomposite. Talanta 120:443–449

    Article  CAS  Google Scholar 

  12. Chani MTS, Karimov KS, Khalid FA, Moiz SA (2013) Polyaniline based impedance humidity sensors. Solid State Sci 18:78–82

    Article  CAS  Google Scholar 

  13. Khan SB, Karimov KS, Chani MTS, Asiri AM, Akhtar K, Fatima N (2015) Impedimetric sensing of humidity and temperature using CeO2–Co3O4 nanoparticles in polymer hosts. Microchim Acta 182:2019–2026

    Article  CAS  Google Scholar 

  14. Usman A, Zia KM, Zuber M, Tabasum S, Rehman S, Zia F (2016) Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. Int J Biol Macromol 86:630–645

    Article  CAS  Google Scholar 

  15. Kamal T, Ul-Islam M, Khan SB, Asiri AM (2015) Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer. Int J Biol Macromol 81:584–590

    Article  CAS  Google Scholar 

  16. Wang L, Kang Y, Wang Y, Zhu B, Zhang S, Huang W et al (2012) CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection. Mater Sci Eng: C 32:2079–2085

    Article  CAS  Google Scholar 

  17. Loh K-S, Lee YH, Musa A, Salmah AA, Zamri I (2008) Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2, 4-dichlorophenoxyacetic acid. Sensors 8:5775–5791

    Article  CAS  Google Scholar 

  18. Prakash R, Fanselau K, Ren S, Mandal TK, Kübel C, Hahn H et al (2013) A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries. Beilstein J Nanotechnol 4:699–704

    Article  CAS  Google Scholar 

  19. Chani MTS, Karimov KS, Khalid FA, Abbas SZ, Bhatty MB (2013) Orange dye-polyaniline composite based impedance humidity sensors. Chin Phys B 22:10701–010701

    Article  Google Scholar 

  20. Dally JW, Riley W, McConnell KG (1993) Instrumentation for engineering measurements. John Wiley and Sons Inc., New York

    Google Scholar 

  21. Croft T, Davison R, Hargreaves M (1992) Engineering mathematics: a modern foundation for electronic, electrical, and control engineers. Addison-Wesley, Wokingham

  22. Chen Z, Lu C (2005) Humidity sensors: a review of materials and mechanisms. Sens Lett 3:274–295

    Article  CAS  Google Scholar 

  23. Boguslavsky SN, Vannikov VV (1968) Organic semiconductors. V.A. Kargin Nauka, Moscow

    Google Scholar 

  24. Steele JJ, Taschuk MT, Brett MJ (2008) Nanostructured metal oxide thin films for humidity sensors. IEEE Sensors J 8:1422–1429

    Article  CAS  Google Scholar 

  25. Varghese OK, Grimes CA (2003) Metal oxide nanoarchitectures for environmental sensing. J Nanosci Nanotechnol 3:277–293

    Article  CAS  Google Scholar 

  26. Zhang C, Sadek A, Breedon M, Ippolito S, Wlodarski W, Truman T, et al. (2008) Conductometric sensor based on nanostructured titanium oxide thin film deposited on polyimide substrate with dissimilar metallic electrodes. 2008 international conference on nanoscience and nanotechnology: IEEE. pp 94–96

  27. Shukla SK, Shukla SK, Govender PP, Agorku ES (2016) A resistive type humidity sensor based on crystalline tin oxide nanoparticles encapsulated in polyaniline matrix. Microchim Acta 183:573–580

    Article  CAS  Google Scholar 

  28. Abbasian H, Ghanbari D, Nabiyouni G (2013) Sonochemical-assisted synthesis of copper oxide nanoparticles and its application as humidity sensor. J Nanostruct 3:429–434

    Google Scholar 

  29. Wang L, Deng J, Lou Z, Zhang T (2014) Cross-linked p-type co 3 O 4 octahedral nanoparticles in 1D n-type TiO 2 nanofibers for high-performance sensing devices. J Mater Chem A 2:10022–10028

    Article  CAS  Google Scholar 

  30. Neamen DA (1992) Semiconductor physics and devices: basic principles. Richard D. Irwin Inc., Boston

    Google Scholar 

  31. Bottger H, Bryksin VV (1985) Hopping conduction in solids. VCH, Weinheim-Deerfield Beach

  32. Brabec CJ, Dyakonov V, Parisi J, Sariciftci NS (2003) Organic photovoltaics: concepts and realization. Springer-Verlag, Berlin-Heidelberg

  33. Chani MTS, Asiri AM, Karimov KS, Niaz AK, Khan SB, Alamry KA (2013) Aluminium phthalocyanine chloride thin films for temperature sensing. Chin Phys B 22:118101

    Article  Google Scholar 

  34. Karimov KS, Chani MTS, Khalid FA (2011) Carbon nanotubes film based temperature sensors. Phys E 43:1701–1703

    Article  CAS  Google Scholar 

  35. Karimov KS, Mahroof-Tahir M, Saleem M, Chani MTS, Niaz AK (2015) Temperature sensor based on composite film of vanadium complex (VO2 (3-fl)) and CNT. J Semicond 36:073004

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (130-333-D1435). The author, therefore, acknowledge with thanks the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tariq Saeed Chani.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chani, M.T.S. Impedimetric sensing of temperature and humidity by using organic-inorganic nanocomposites composed of chitosan and a CuO-Fe3O4 nanopowder. Microchim Acta 184, 2349–2356 (2017). https://doi.org/10.1007/s00604-017-2259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2259-3

Keywords

Navigation