Skip to main content
Log in

Quartz tuning fork based portable sensor for vapor phase detection of methanol adulteration of ethanol by using aniline-doped polystyrene microwires

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a sensor capable of detecting methanol adulteration of ethanol. The sensor is based on the use of quartz tuning forks (QTFs) that were functionalized with polymer wires made from a combination of polystyrene (PS) and aniline. Exposure to organic vapors causes the resonance frequency of the functionalized QTF to change, and this can be used to identify the type and concentration of the analyte. A mixture of methanol and ethanol vapors in varying concentrations was exposed to the QTF polymer system. The resulting shift in the resonance frequency of the QTF was firstly used to determine the concentration of alcohol vapor, which is reflected in the amount of shift. Secondly, the nature of change in resonance frequency was used to determine the type of alcohol exposed to the sensor. The sensitivity and selectivity of the sensors to ethanol and methanol vapors has been investigated. A portable hand-held prototype sensor has been developed which displays the percentage of two alcohols it is exposed to. It can detect ethanol adulteration where the methanol concentration is as low as 5%.

Spring loaded Quartz Tuning Fork sensors functionalized with polystyrene-aniline wires exhibit opposite responses (increase and decrease in frequency) to vapors of ethanol and methanol respectively.The methanol adulteration of ethanol solutions may thus be detected by sensing their vapors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Munoz-Munoz AC, Grenier AC, Gutierrez-Pulido H, Cervantes-Martinez J (2008) Development and validation of a high performance liquid chromatography-diode Array detection method for the determination of aging markers in tequila. J Chromatogr A 1213:218

    Article  CAS  Google Scholar 

  2. James D, Scott MS, Ali Z, O'Hare TW (2005) Chemical sensors for electronic nose systems. Microchim Acta 149:1

    Article  CAS  Google Scholar 

  3. Mallet AM, Davis AB, Davis DR, Panella J, Wallace KJ, Bonizzoni M (2015) A cross reactive sensor array to probe divalent metal ions. Chem Commun 51:16948

    Article  CAS  Google Scholar 

  4. Smyth H, Cozzolino D (2013) Instrumental methods (spectroscopy, electronic nose, and tongue) as tools to predict taste and aroma in beverages: advantages and limitations. Chem Rev 113:1429

    Article  CAS  Google Scholar 

  5. Tisch U, Haick H (2010) Arrays of chemisensitive monolayer-capped metallic nanoparticles for diagnostic breath testing. Rev Chem Eng 26:171

    Article  CAS  Google Scholar 

  6. Paine AJ, Dayan AD (2011) Defining a tolerable concentration of methanol in alcoholic drinks. Hum Exp Toxicol 20:563

    Article  Google Scholar 

  7. Zhang L, Qi H, Wang Y, Yang L, Yu P, Mao L (2014) Effective visualization assay for alcohol content sensing and methanol differentiation with solvent stimuli-responsive supramolecular ionic materials. Anal Chem 86:7280

    Article  CAS  Google Scholar 

  8. Yildirim A, Ozturk FE, Bayindir M (2013) Smelling in chemically complex environments: an Optofluidic Bragg fiber Array for differentiation of methanol adulterated beverages. Anal Chem 85:6384

    Article  CAS  Google Scholar 

  9. Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267

    Article  CAS  Google Scholar 

  10. Ren M, Forzani ES, Tao N (2005) Chemical sensor based on microfabricated wristwatch tuning forks. Anal Chem 77:2700

    Article  CAS  Google Scholar 

  11. Chen C, Tsow F, Campbell KD, Iglesias R, Forzani ES, Tao N (2013) A wireless hybrid chemical sensor for detection of environmental volatile organic compounds. IEEE Sensors J 13:1748

    Article  CAS  Google Scholar 

  12. Yun M, Lee S, Yim C, Jung N, Thundat T, Jeon S (2013) Suspended polymer nanobridge on a quartz resonator. Appl Phys Lett 103:053109

    Article  Google Scholar 

  13. Boussaad S, Tao NJ (2003) Polymer wire chemical sensor using a microfabricated tuning fork. Nano Lett 3:1173

    Article  CAS  Google Scholar 

  14. Sampson SA, Date KS, Panchal SV, Ambrale A, Datar SS (2015a) Investigation of QTF based gas sensors. Sensor Actuators B Chem 216:586

    Article  CAS  Google Scholar 

  15. Sampson SA, Panchal SV, Date KS, Datar SS (2015b) QTF Based Methanol Sensors. In: proceedings of the 2nd international symposium on physics and Technology of Sensors (ISPTS) march 8–10, Pune (IEEE, 2015), pp. 303

  16. Wang R, Tsow F, Zhang X, Peng JH, Forzani ES, Chen Y, Crittenden JC, Destaillats H, Tao N (2009) Real-time ozone detection based on a microfabricated quartz crystal tuning fork sensor. Sensors 9:5655

    Article  CAS  Google Scholar 

  17. Tsow F, Tao N (2007) Microfabricated tuning fork temperature and infrared sensor. Appl Phys Lett 90:174102

    Article  Google Scholar 

  18. Rai A, Tsow F, Nassirpour S, Bankers J, Spinatsch M, He MP, Forzani E, Tao NJ (2005) Selective detection of sulfur derivatives using microfabricated tuning fork-based sensors. Sensor Actuators B Chem 140:490

    Article  Google Scholar 

  19. Iglesias RA, Tsow F, Wang R, Forzani ES, Tao N (2009) Hybrid separation and detection device for analysis of benzene, toluene, ethylbenzene, and xylenes in complex samples. Anal Chem 81:8930

    Article  CAS  Google Scholar 

  20. Agrawal JP (2010) High energy materials: propellants, explosives and pyrotechnics. Wiley, Weinheim

    Book  Google Scholar 

  21. Reynisson J, McDonald E (2004) Tuning of hydrogen bond strength using substituents on phenol and aniline: a possible ligand design strategy. J Comput Aided Mol Des 18:421

    Article  CAS  Google Scholar 

  22. Honkawa Y, Inokuchi Y, Ohashi K, Nishi N, Sekiya H (2002) Infrared photodissociation spectroscopy of aniline+–(water)1,2 and aniline+–(methanol)1,2. Chem Phys Lett 358:419

    Article  CAS  Google Scholar 

  23. Peres LO, Li RW, Yamauchi EY, Lippi R, Gruber J (2012) Conductive polymer gas sensor for quantitative detection of methanol in Brazilian sugar-cane spirit. Food Chem 130:1105

    Article  CAS  Google Scholar 

  24. Bucur B, Radu GL, Toader CN (2008) Analysis of methanol–ethanol mixtures from falsified beverages using a dual biosensors amperometric system based on alcohol dehydrogenase and alcohol oxidase. Eur Food Res Technol 226:1335

    Article  CAS  Google Scholar 

  25. Buenoa L, Paixo TR (2011) A copper interdigitated electrode and chemometrical tools used for the discrimination of the adulteration of ethanol fuel with water. Talanta 87:210

    Article  Google Scholar 

  26. da Costa RS, Santos SRB, Almeida LF, Nascimento ECL, Pontes MJC, Lima RAC, Simoes SS, Araujo MCU (2004) A novel strategy to verification of adulteration in alcoholic beverages based on Schlieren effect measurements and chemometric techniques. Microchem J 78:27

    Article  Google Scholar 

  27. Penza M, Cassano G (2004) Recognition of adulteration of Italian wines by thin-film multisensor array and artificial neural networks. Anal Chim Acta 509:159

    Article  CAS  Google Scholar 

  28. Pontes MJC, Santos SRB, Araujo MCU, Almeida LF, Lima RAC, Gaiao EN, Souto UTCP (2006) Classification of distilled alcoholic beverages and verification of adulteration by near infrared spectrometry. Food Res Int 39:182

    Article  CAS  Google Scholar 

  29. Carneiro HSP, Medeiros ARB, Oliveira FCC, Aguiar GHM, Rubim JC, Suarez PAZ (2008) Determination of ethanol fuel adulteration by methanol using partial least-squares models based on Fourier transform techniques. Energy Fuel 22:2767

    Article  CAS  Google Scholar 

  30. Garrigues JM, Perez-Ponce A, Garrigues S, de la Guardia M (1997) Direct determination of ethanol and methanol in liquid samples by means of vapor phase-Fourier transform infrared spectrometry Vib. Spectroscopy 15:219

    CAS  Google Scholar 

  31. Abreu REL, Paz JEM, Silva AC, Pontes MJ, Lemos SG (2015) Ethanol fuel adulteration with methanol assessed by cyclic voltammetry and multivariate calibration. Fuel 156:20

    Article  CAS  Google Scholar 

  32. Neto AC, Oliveira ECS, Lacerda V Jr, Castro EVR, Romao W, Silva RC, Pereira RG, Sten T, Filgueiras PR, Poppi RJ (2014) Quality control of ethanol fuel: assessment of adulteration with methanol using 1H NMR. Fuel 135:387

    Article  CAS  Google Scholar 

  33. Nagarajan R, Mehrotra R, Bajaj MM (2006) Quantitative analysis of methanol, an adulterant in alcoholic beverages, using attenuated total reflectance spectroscopy. J Sci Ind Res 65:416

    CAS  Google Scholar 

  34. Coldea TE, Socaciu C, Fetea F, Ranga F, Pop RM, Florea M (2013) Rapid quantitative analysis of ethanol and prediction of methanol content in traditional fruit brandies from Romania, using FTIR spectroscopy and Chemometrics. Not Bot Horti Agrobo 41:143

    CAS  Google Scholar 

  35. Pereira PF, Sousa RMF, Munoz RAA, Richter EM (2013) Simultaneous determination of ethanol and methanol in fuel ethanol using cyclic voltammetry. Fuel 103:725

    Article  CAS  Google Scholar 

  36. Fernandes HL, Raimundo IM Jr, Pasquini C, Rohwedder JJR (2008) Simultaneous determination of methanol and ethanol in gasoline using NIR spectroscopy: effect of gasoline composition. Talanta 75:804

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SVP, SB and SSD would like to acknowledge the DIAT-DRDO project on nanomaterials for financially supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwarna S Datar.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

Online Resource 1

(DOCX 21.1 mb)

Online Resource 2

(AVI 24390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampson, S.A., Panchal, S.V., Mishra, A. et al. Quartz tuning fork based portable sensor for vapor phase detection of methanol adulteration of ethanol by using aniline-doped polystyrene microwires. Microchim Acta 184, 1659–1667 (2017). https://doi.org/10.1007/s00604-017-2159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2159-6

Keywords

Navigation