Skip to main content
Log in

Magnetic silver(I) ion-imprinted polymeric nanoparticles on a carbon paste electrode for voltammetric determination of silver(I)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Magnetic silver ion imprinted polymer nanoparticles (mag-IIP-NPs) were prepared and used as a recognition element in electrochemical detection of silver(I). The procedure involves two steps: (a) the extraction of the Ag(I) by the mag-IIP-NPs, and (b) determination of the preconcentrated Ag(I) ions on the surface of the magneto carbon paste electrode (MCPE) using differential pulse voltammetry. The amount of sorbent, pH value of the sample solution, extraction time, supporting electrolyte, reduction potential and reduction time were optimized. Under optimal conditions and at a working voltage of +0.02 V (vs. Ag/AgCl), the method displays a linear response in the 0.05 to 150 μg⋅L−1 Ag(I) concentration range. Other features include a low detection limit (15 ng⋅L−1), a remarkable selectivity and good reproducibility (with an RSD of 4.7%). The results obtained with this analytical assay when analyzing different water samples were compared with the data obtained by GF-AAS, and the results agreed satisfactorily. In our perception, this approach also may be extended to electrochemical detection for other ions, and this makes it a widely applicable strategy for heavy metal ion analysis.

Schematic illustration of the procedure for the extraction and voltammetric detection of silver(I) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Purcell TW, Peters JJ (1998) Sources of silver in the environment. Environ Toxicol Chem 17(4):539–546. doi:10.1002/etc.5620170404

    Article  CAS  Google Scholar 

  2. Howe PD, Dobson S (2002) Silver and silver compounds: environmental aspects. Conciseinternational chemical assessment document.

  3. U.S. Environmental Protection Agency (1991) National primary drinking water regulations. Final Rule. Fed Regist 56:3573–3574

  4. Erdreich L, Bruins R, Withey J (1985) Drinking Water Criteria Document for Silver(Final Draft). U.S. Environmental Protection Agency, Washington, D.C., EPA/600/X-85/040 (NTIS PB86118288).

  5. Shamspur T, Mashhadizadeh MH, Sheikhshoaie I (2003) Flame atomic absorption spectrometric determination of silver ion after preconcentration on octadecyl silica membrane disk modified with bis[5-((4-nitrophenyl)azosalicylaldehyde)] as a new Schiff base ligand. J Anal At Spectrom 18(11):1407–1410. doi:10.1039/b308002a

    Article  CAS  Google Scholar 

  6. Sánchez-Pomales G, Mudalige TK, Lim J-H, Linder SW (2013) Rapid determination of silver in Nanobased liquid dietary supplements using a portable X-ray fluorescence analyzer. J Agric Food Chem 61(30):7250–7257. doi:10.1021/jf402018t

    Article  Google Scholar 

  7. Ndung'u K, Ranville MA, Franks RP, Flegal AR (2006) On-line determination of silver in natural waters by inductively-coupled plasma mass spectrometry: influence of organic matter. Mar Chem 98(2–4):109–120. doi:10.1016/j.marchem.2005.07.003

    Article  Google Scholar 

  8. Shamsipur M, Reza Hashemi O, Salavati-Niasari M (2007) Selective flotation-separation and inductively coupled plasma-atomic emission spectrometric determination of ultra trace amounts of silver ion using Bis(2-mercaptoanil)acetylacetone. Sep Sci Technol 42(3):567–578. doi:10.1080/01496390601069895

    Article  CAS  Google Scholar 

  9. Huy GD, Zhang M, Zuo P, Ye B-C (2011) Multiplexed analysis of silver(i) and mercury(ii) ions using oligonucletide-metal nanoparticle conjugates. Analyst 136(16):3289–3294. doi:10.1039/c1an15373k

    Article  CAS  Google Scholar 

  10. Mendes IA, Turel ZR (1986) Substoichiometric determination of silver by neutron activation analysis. J Radioanal Nucl Chem 106(5):273–279. doi:10.1007/bf02162491

    Article  CAS  Google Scholar 

  11. Zhang M, Z-b Q, Ma H-Y, Zhou T, Shi G (2014) DNA-based sensitization of Tb3+ luminescence regulated by Ag+ and cysteine: use as a logic gate and a H2O2 sensor. Chem Commun 50(36):4677–4679. doi:10.1039/c4cc01065e

    Article  CAS  Google Scholar 

  12. Liu Q, Wang F, Qiao Y, Zhang S, Ye B (2010) Polyaniline Langmuir–Blodgett film modified glassy carbon electrode as a voltammetric sensor for determination of Ag+ ions. Electrochim Acta 55(5):1795–1800. doi:10.1016/j.electacta.2009.10.069

    Article  CAS  Google Scholar 

  13. Bahrami A, Besharati-Seidani A, Abbaspour A, Shamsipur M (2014) A highly selective voltammetric sensor for sub-nanomolar detection of lead ions using a carbon paste electrode impregnated with novel ion imprinted polymeric nanobeads. Electrochim Acta 118:92–99. doi:10.1016/j.electacta.2013.11.180

    Article  CAS  Google Scholar 

  14. Bahrami A, Besharati-Seidani A, Abbaspour A, Shamsipur M (2015) A highly selective voltammetric sensor for nanomolar detection of mercury ions using a carbon ionic liquid paste electrode impregnated with novel ion imprinted polymeric nanobeads. Mater Sci Eng C 48:205–212. doi:10.1016/j.msec.2014.12.005

    Article  CAS  Google Scholar 

  15. Fayazi M, Ghanei-Motlagh M, Taher MA, Ghanei-Motlagh R, Salavati MR (2016) Synthesis and application of a novel nanostructured ion-imprinted polymer for the preconcentration and determination of thallium(I) ions in water samples. J Hazard Mater 309:27–36. doi:10.1016/j.jhazmat.2016.02.002

    Article  CAS  Google Scholar 

  16. Fayazi M, Taher MA, Afzali D, Mostafavi A, Ghanei-Motlagh M (2016) Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions. Mater Sci Eng C 60:365–373. doi:10.1016/j.msec.2015.11.060

    Article  CAS  Google Scholar 

  17. Niu M, Pham-Huy C, He H (2016) Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta 183(10):2677–2695. doi:10.1007/s00604-016-1930-4

    Article  CAS  Google Scholar 

  18. Zhang Z, Luo L, Cai R, Chen H (2013) A sensitive and selective molecularly imprinted sensor combined with magnetic molecularly imprinted solid phase extraction for determination of dibutyl phthalate. Biosens Bioelectron 49:367–373. doi:10.1016/j.bios.2013.05.054

    Article  CAS  Google Scholar 

  19. Kazemi E, Haji Shabani A, Dadfarnia S (2015) Synthesis and characterization of a nanomagnetic ion imprinted polymer for selective extraction of silver ions from aqueous samples. Microchim Acta 182(5–6):1025–1033. doi:10.1007/s00604-014-1430-3

    Article  CAS  Google Scholar 

  20. Alizadeh T, Amjadi S (2011) Preparation of nano-sized Pb2+ imprinted polymer and its application as the chemical interface of an electrochemical sensor for toxic lead determination in different real samples. J Hazard Mater 190(1–3):451–459. doi:10.1016/j.jhazmat.2011.03.067

    Article  CAS  Google Scholar 

  21. Dakova I, Yordanova T, Karadjova I (2012) Non-chromatographic mercury speciation and determination in wine by new core–shell ion-imprinted sorbents. J Hazard Mater 231–232:49–56. doi:10.1016/j.jhazmat.2012.06.034

    Article  Google Scholar 

  22. Ashkenani H, Taher MA (2012) Selective voltammetric determination of Cu(II) based on multiwalled carbon nanotube and nano-porous Cu-ion imprinted polymer. J Electroanal Chem 683:80–87. doi:10.1016/j.jelechem.2012.08.010

    Article  CAS  Google Scholar 

  23. Yang Z, Zhang C, Zhang J, Bai W (2014) Potentiometric glucose biosensor based on core–shell Fe3O4–enzyme–polypyrrole nanoparticles. Biosens Bioelectron 51:268–273. doi:10.1016/j.bios.2013.07.054

    Article  CAS  Google Scholar 

  24. Chen J, Zhu X (2015) Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples. Spectrochim Acta A Mol Biomol Spectrosc 137:456–462. doi:10.1016/j.saa.2014.08.113

    Article  CAS  Google Scholar 

  25. Shaikh H, Memon N, Bhanger MI, Nizamani SM, Denizli A (2014) Core–shell molecularly imprinted polymer-based solid-phase microextraction fiber for ultra trace analysis of endosulfan I and II in real aqueous matrix through gas chromatography–micro electron capture detector. J Chromatogr A 1337:179–187. doi:10.1016/j.chroma.2014.02.035

    Article  CAS  Google Scholar 

  26. Li H, Xu W, Wang N, Ma X, Niu D, Jiang B, Liu L, Huang W, Yang W, Zhou Z (2012) Synthesis of magnetic molecularly imprinted polymer particles for selective adsorption and separation of dibenzothiophene. Microchim Acta 179(1–2):123–130. doi:10.1007/s00604-012-0873-7

    Article  CAS  Google Scholar 

  27. Alizadeh T (2014) Preparation of magnetic TNT-imprinted polymer nanoparticles and their accumulation onto magnetic carbon paste electrode for TNT determination. Biosens Bioelectron 61:532–540. doi:10.1016/j.bios.2014.05.041

    Article  CAS  Google Scholar 

  28. Panjali Z, Asgharinezhad AA, Ebrahimzadeh H, Karami S, Loni M, Rezvani M, Yarahmadi R, Shahtaheri SJ (2015) Development of a selective sorbent based on a magnetic ion imprinted polymer for the preconcentration and FAAS determination of urinary cadmium. Anal Methods 7(8):3618–3624. doi:10.1039/c4ay03066d

    Article  CAS  Google Scholar 

  29. Rohani T, Taher MA (2010) Preparation of a carbon ceramic electrode modified by 4-(2-pyridylazo)-resorcinol for determination of trace amounts of silver. Talanta 80(5):1827–1831. doi:10.1016/j.talanta.2009.10.029

    Article  CAS  Google Scholar 

  30. Nadiki HH, Taher MA, Ashkenani H, Sheikhshoai I (2012) Fabrication of a new multi-walled carbon nanotube paste electrode for stripping voltammetric determination of Ag(i). Analyst 137(10):2431–2436. doi:10.1039/c2an16004h

    Article  CAS  Google Scholar 

  31. Mohadesi A, Taher MA (2007) Stripping voltammetric determination of silver(I) at carbon paste electrode modified with 3-amino-2-mercapto quinazolin-4(3H)-one. Talanta 71(2):615–619. doi:10.1016/j.talanta.2006.05.001

    Article  CAS  Google Scholar 

  32. Shamsipur M, Hashemi B, Dehdashtian S, Mohammadi M, Gholivand MB, Garau A, Lippolis V (2014) Silver ion imprinted polymer nanobeads based on a aza-thioether crown containing a 1,10-phenanthroline subunit for solid phase extraction and for voltammetric and potentiometric silver sensors. Anal Chim Acta 852:223–235. doi:10.1016/j.aca.2014.09.028

    Article  CAS  Google Scholar 

  33. Yang H, Liu X, Fei R, Hu Y (2013) Sensitive and selective detection of Ag+ in aqueous solutions using Fe3O4@Au nanoparticles as smart electrochemical nanosensors. Talanta 116:548–553. doi:10.1016/j.talanta.2013.07.041

    Article  CAS  Google Scholar 

  34. Rust IM, Goran JM, Stevenson KJ (2015) Amperometric detection of aqueous silver ions by inhibition of glucose oxidase immobilized on nitrogen-doped carbon nanotube electrodes. Anal Chem 87(14):7250–7257. doi:10.1021/acs.analchem.5b01224

    Article  CAS  Google Scholar 

  35. Afkhami A, Shirzadmehr A, Madrakian T, Bagheri H (2015) New nano-composite potentiometric sensor composed of graphene nanosheets/thionine/molecular wire for nanomolar detection of silver ion in various real samples. Talanta 131:548–555. doi:10.1016/j.talanta.2014.08.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ghanei-Motlagh.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanei-Motlagh, M., Taher, M.A. Magnetic silver(I) ion-imprinted polymeric nanoparticles on a carbon paste electrode for voltammetric determination of silver(I). Microchim Acta 184, 1691–1699 (2017). https://doi.org/10.1007/s00604-017-2157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2157-8

Keywords

Navigation