Skip to main content
Log in

A europium (III) based nano-flake MOF film for efficient fluorescent sensing of picric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a fast response-recovery characteristics of optical sensing platform based on a luminescent thin film composed of a nano-flake metal organic framework (MOF) of the type [Eu4(NDC)6(H2O)5]·3H2O (referred to as Eu-NDC), where NDC stands for naphthalene-2,6-dicarboxylate. The film can be prepared within 20 s and shows strong luminescence (with excitation/emission maxima at 355/614 nm) that is characteristic for Eu(III) ion sensitized by the electron-rich ligands. The structure of the MOF films is confirmed by powder X-ray diffraction, and their surface morphology is examined by scanning electron microscopy. The luminescence of the sensor film is strongly quenched by picric acid (PA), and this finding is exploited in a sensing scheme for PA with good selectivity over other nitroaromatic explosives. The limit of detection for PA is 0.67 μM. The luminescence quenching mechanisms were also investigated. The sensor is easily prepared, stable, and can be recycled by rinsing with water. It was also applied to the determination of PA in Pearl River water that was spiked with PA.

A luminescent MOF film was employed as a sensor for picric acid (PA) with good selectivity over other nitroaromatic explosives such as 1,3-dinitrobenzene (DNB), 4-nitrotoluene (NT), 2,4-dinitrotoluene (DNT), 2,4,6-Trinitrotoluene (TNT) and nitrobenzene (NB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mantha R, Taylor KE, Biswas N, Bewtra JK (2001) A continuous system for Fe(0) reduction of nitrobenzene in synthetic wastewater. Environ Sci Technol 35(15):3231–3236

    Article  CAS  Google Scholar 

  2. Shen J, Zhang J, Zuo Y, Wang L, Sun X, Li J, Han W, He R (2009) Biodegradation of 2, 4, 6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. J Hazard Mater 163(2–3):1199–1206

    Article  CAS  Google Scholar 

  3. Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence analysis in microarray technology. Microchim Acta 151(1–2):1–21

    Article  CAS  Google Scholar 

  4. Wang XD, Wolfbeis OS (2016) Fiber-optic chemical sensors and. Biosensors (2013-2015). Anal Chem 88(1):203–227

    Article  CAS  Google Scholar 

  5. Zhou X, Li H, Xiao H, Li L, Zhao Q, Yang T, Zuo J, Huang W (2013) A microporous luminescent europium metal-organic framework for nitro explosive sensing. Dalton Trans 42(16):5718–5723

    Article  CAS  Google Scholar 

  6. Zhang L, Kang Z, Xin X, Sun D (2016) Metal–organic frameworks based luminescent materials for nitroaromatics sensing. Cryst Eng Comm 18(2):193–206

    Article  CAS  Google Scholar 

  7. Nagarkar SS, Desai AV, Ghosh SK (2016) Engineering metal–organic frameworks for aqueous phase 2,4,6-trinitrophenol (TNP) sensing. CrystEngComm 18(17):2994–3007

    Article  CAS  Google Scholar 

  8. Wong KL, Law GL, Yang YY, Wong WT (2006) A highly porous luminescent terbium–organic framework for reversible anion sensing. Adv Mater 18(8):1051–1054

    Article  CAS  Google Scholar 

  9. Sabetghadam A, Seoane B, Keskin D, Duim N, Rodenas T, Shahid S, Sorribas S, Guillouzer CL, Clet G, Tellez C, Daturi M, Coronas J, Kapteijn F, Gascon J (2016) Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance. Adv Funct Mater 26(18):3154–3163

    Article  CAS  Google Scholar 

  10. Worrall SD, Mann H, Rogers A, Bissett MA, Attfield MP, Dryfe RAW (2016) Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes. Electrochim Acta 197:228–240

    Article  CAS  Google Scholar 

  11. Stavila V, Schneider C, Mowry C, Zeitler TR, Greathouse JA, Robinson AL, Denning JM, Volponi J, Leong K, Quan W, Tu M, Fischer RA, Allendorf MD (2016) Thin film growth of nbo MOFs and their integration with electroacoustic devices. Adv Funct Mater 26(11):1699–1707

    Article  CAS  Google Scholar 

  12. Wang Y, Chu T, Yu M, Liu H, Yang Y (2014) One step cathodically electrodeposited [Tb2(BDC)3(H2O)4]nthin film as a luminescent probe for Cu2+detection. RSC Adv 4(102):58178–58183

    Article  CAS  Google Scholar 

  13. Bradshaw D, Garai A, Huo J (2012) Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. Chem Soc Rev 41(6):2344–2381

    Article  CAS  Google Scholar 

  14. Shi E, Zou X, Liu J, Lin H, Zhang F, Shi S, Liu F, Zhu G, Qu F (2016) Electrochemical fabrication of copper-containing metal-organic framework films as amperometric detectors for bromate determination. Dalton Trans 45(18):7728–7736

    Article  CAS  Google Scholar 

  15. Li W-J, Tu M, Cao R, Fischer RA (2016) Metal–organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives. J Mater Chem A 4(32):12356–12369

    Article  CAS  Google Scholar 

  16. Zhu YM, Zeng CH, Chu TS, Wang HM, Yang YY, Tong YX, Su CY, Wong WT (2013) A novel highly luminescent LnMOF film: a convenient sensor for Hg2+ detecting. J Mater Chem A 1(37):11312–11319

    Article  CAS  Google Scholar 

  17. Zheng X, Sun C, Lu S, Liao F, Gao S, Jin L (2004) New porous lanthanide-organic frameworks: synthesis, characterization, and properties of lanthanide 2,6-Naphthalenedicarboxylates. Eur J Inorg Chem 2004(16):3262–3268

    Article  Google Scholar 

  18. Sun Y, Yang F, Wei Q, Wang N, Qin X, Zhang S, Wang B, Nie Z, Ji S, Yan H, Li JR (2016) Oriented Nano-microstructure-assisted controllable fabrication of metal-organic framework membranes on nickel foam. Adv Mater 28(12):2374–2381

    Article  CAS  Google Scholar 

  19. Ye J, Wang X, Bogale RF, Zhao L, Cheng H, Gong W, Zhao J, Ning G (2015) A fluorescent zinc–pamoate coordination polymer for highly selective sensing of 2,4,6-trinitrophenol and Cu2+ ion. Sensors Actuators B Chem 210:566–573

    Article  CAS  Google Scholar 

  20. Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107(4):1339–1386

    Article  CAS  Google Scholar 

  21. Zhou XH, Li L, Li HH, Li A, Yang T, Huang W (2013) A flexible Eu(III)-based metal-organic framework: turn-off luminescent sensor for the detection of Fe(III) and picric acid. Dalton Trans 42(34):12403–12409

    Article  CAS  Google Scholar 

  22. El-Ballouli AO, Alarousu E, Bernardi M, Aly SM, Lagrow AP, Bakr OM, Mohammed OF (2014) Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C(6)(1)-butyric acid methyl ester interface. J Am Chem Soc 136(19):6952–6959

    Article  CAS  Google Scholar 

  23. Nagarkar SS, Desai AV, Ghosh SK (2014) A fluorescent metal-organic framework for highly selective detection of nitro explosives in the aqueous phase. Chem Commun 50(64):8915–8918

    Article  CAS  Google Scholar 

  24. Song X-Z, Song S-Y, Zhao S-N, Hao Z-M, Zhu M, Meng X, Wu L-L, Zhang H-J (2014) Single-crystal-to-single-crystal transformation of a europium(III) metal-organic framework producing a multi-responsive luminescent sensor. Adv Funct Mater 24(26):4034–4041

    Article  CAS  Google Scholar 

  25. Yang J, Wang Z, Hu K, Li Y, Feng J, Shi J, Gu J (2015) Rapid and specific aqueous-phase detection of nitroaromatic explosives with inherent porphyrin recognition sites in metal-organic frameworks. ACS Appl Mater Interfaces 7(22):11956–11964

    Article  Google Scholar 

  26. Junqueira JR, de Araujo WR, Salles MO, Paixao TR (2013) Flow injection analysis of picric acid explosive using a copper electrode as electrochemical detector. Talanta 104:162–168

    Article  CAS  Google Scholar 

  27. Giribabu K, Oh SY, Suresh R, Kumar SP, Manigandan R, Munusamy S, Gnanamoorthy G, Kim JY, Huh YS, Narayanan V (2016) Sensing of picric acid with a glassy carbon electrode modified with CuS nanoparticles deposited on nitrogen-doped reduced graphene oxide. Microchim Acta 183(8):2421–2430

    Article  CAS  Google Scholar 

  28. Tian X, Qi X, Liu X, Zhang Q (2016) Selective detection of picric acid by a fluorescent ionic liquid chemosensor. Sensors Actuators B Chem 229:520–527

    Article  CAS  Google Scholar 

  29. Bhalla V, Gupta A, Kumar M (2012) Fluorescent nanoaggregates of Pentacenequinone derivative for selective sensing of picric acid in aqueous media. Org Lett 14(12):3112–3115

    Article  CAS  Google Scholar 

  30. Sk M, Biswas S (2016) A thiadiazole-functionalized Zr(iv)-based metal–organic framework as a highly fluorescent probe for the selective detection of picric acid. CrystEngComm 18(17):3104–3113

    Article  CAS  Google Scholar 

  31. Sanchez JC, DiPasquale AG, Rheingold AL, Trogler WC (2007) Synthesis, luminescence properties and explosives sensing with 1,1-tetraphenylsilole- and 1,1-silafluorene-vinylene polymers. Chem Mater 19(26):6459–6470

    Article  CAS  Google Scholar 

  32. Gu Q, Kenny JE (2009) Improvement of inner filter effect correction based on determination of effective geometric parameters using a conventional fluorimeter. Anal Chem 81(1):420–426

    Article  CAS  Google Scholar 

  33. Lv XJ, Qi L, Gao XY, Wang H, Huo Y, Zhang ZQ (2016) Selective detection of 2,4,6-trinitrophenol based on a fluorescent nanoscale bis(8-hydroxyquinoline) metal complex. Talanta 150:319–323

    Article  CAS  Google Scholar 

  34. Wang Y-Q, Tan Q-H, Liu H-T, Sun W, Liu Z-L (2015) A luminescent europium MOF containing Lewis basic pyridyl site for highly selective sensing of o-, m- and p-nitrophenol. RSC Adv 5(105):86614–86619

    Article  CAS  Google Scholar 

  35. Nagarkar SS, Desai AV, Samanta P, Ghosh SK (2015) Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal-organic framework with a pendant recognition site. Dalton Trans 44(34):15175–15180

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support of the National Natural Science Foundation of China (51472275, 20973203 and 91022012) and Guangdong Natural Science Foundation (2014A030313207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangyi Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhang, G., Yao, H. et al. A europium (III) based nano-flake MOF film for efficient fluorescent sensing of picric acid. Microchim Acta 184, 1207–1213 (2017). https://doi.org/10.1007/s00604-017-2127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2127-1

Keywords

Navigation