Skip to main content
Log in

Simultaneous voltammetric determination of dopamine and uric acid using carbon-encapsulated hollow Fe3O4 nanoparticles anchored to an electrode modified with nanosheets of reduced graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemical sensor for simultaneous determination of dopamine (DA) and uric acid (UA). The sensor is based on the use of composite materials of carbon-encapsulated hollow magnetite (Fe3O4) nanoparticles and graphene oxide nanosheets, which were homogeneously deposited on a glassy carbon electrode. The morphology of the materials was characterized by transmission electron microscopy and scanning electron microscopy, and the properties of differently decorated electrodes were investigated via cyclic voltammetry and differential pulse voltammetry (DPV). Simultaneous detection of DA and UA was carried out via DPV, and the potentials of electrooxidation peaks are 0.14 V and 0.27 V (vs. SCE) for DA and UA, respectively. The calibration plot is linear from 0.1 to 150 μM for DA, and from 1.0 to 100 μM for UA, with detection limits of 0.053 μM and 0.41 μM at an S/N ratio of 3. The method was applied to the quantification of DA and UA in brain tissue, urine and whole blood.

Schematic of an electrochemical sensor for simultaneous voltammetric determination of dopamine (DA) and uric acid (UA) using 3D carbon-encapsulated hollow Fe3O4 nanoparticles (H-Fe3O4@C) anchored on graphene nanosheet (GNS) modified glassy carbon electrode (GCE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sheng ZH, Zheng XQ, Xu JY, Bao WJ, Wang FB, Xia XH (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34(1):125–131

    Article  CAS  Google Scholar 

  2. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1–2):1–41

    Article  CAS  Google Scholar 

  3. Noroozifar M, Khorasani-Motlagh M, Akbari R, Bemanadi Parizi M (2011) Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube. Biosens Bioelectron 28(1):56–63

    Article  CAS  Google Scholar 

  4. Huang J, Liu Y, Hou H, You T (2008) Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens Bioelectron 24(4):632–637

    Article  CAS  Google Scholar 

  5. Han D, Han T, Shan C, Ivaska A, Niu L (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanal 22(17–18):2001–2008

    Article  CAS  Google Scholar 

  6. Ensafi AA, Taei M, Khayamian T (2009) A differential pulse voltammetric method for simultaneous determination of ascorbic acid, dopamine, and uric acid using poly (3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid) film modified glassy carbon electrode. J Electroanal Chem 633(1):212–220

    Article  CAS  Google Scholar 

  7. Han HS, Seol H, Kang DH, Ahmed MS, You JM, Jeon S, Han HS, Seol H, Kang DH, Ahmed MS (2014) Electrochemical oxidation and determination of dopamine in the presence of AA using ferulic acid functionalized electrochemically reduced graphene. Sensor Actuat B: Chem 204(204):289–296

    Article  CAS  Google Scholar 

  8. Wang HY, Sun Y, Tang B (2002) Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 57(5):899–907

    Article  CAS  Google Scholar 

  9. Nalewajko E, RamíRez RB, Kojło A (2004) Determination of dopamine by flow-injection analysis coupled with luminol-hexacyanoferrate(III) chemiluminescence detection. J Pharmaceut Biome 36(1):219–223

    Article  CAS  Google Scholar 

  10. Sasa S, Blank LR (1977) Determination of serotonin and dopamine in mouse brain tissue by high performance liquid chromatography with electrochemical detection. Anal Chem 49(3):354–359

    Article  CAS  Google Scholar 

  11. Li Y, Song H, Zhang L, Zuo P, Ye BC, Yao J, Chen W (2015) Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosens Bioelectron 78:308–314

    Article  Google Scholar 

  12. Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181(15–16):1999–2008

    Article  CAS  Google Scholar 

  13. Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y (2014) Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 53:220–224

    Article  CAS  Google Scholar 

  14. Cai W, Lai J, Lai T, Xie H, Ye J (2016) Controlled functionalization of flexible graphene fibers for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sensor Actuat B: Chem 224:225–232

    Article  CAS  Google Scholar 

  15. Shahrokhian S, Rastgar S (2012) Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst 137(137):2706–2715

    Article  CAS  Google Scholar 

  16. Guo S, Wen D, Dong S, Wang E (2009) Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta 77(4):1510–1517

    Article  CAS  Google Scholar 

  17. Yang SA, Jiang X, Dong YJ, Zhu NN, Wang YF (2013) Ferroferric oxide magnetic nanoparticles carbon nanotubes nanocomposite-based electrochemical sensor applied for detection of bisphenol a. Adv Mater 663:297–302

    Article  Google Scholar 

  18. Huang J, Tian J, Zhao Y, Zhao S (2015) Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sensor Actuat B: Chem 206:570–576

    Article  CAS  Google Scholar 

  19. Liu Y, Liu J, Tang H, Liu J, Xu B, Yu F, Li Y (2015) Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sensor Actuat B: Chem 206:647–652

    Article  Google Scholar 

  20. Wang Y, Zhang Y, Hou C, Liu M (2016) Ultrasensitive electrochemical sensing of dopamine using reduced graphene oxide sheets decorated with p-toluenesulfonate-doped polypyrrole/Fe3O4 nanospheres. Microchim Acta 183(3):1145–1152

    Article  CAS  Google Scholar 

  21. Bates F, Valle MD (2015) Voltammetric sensor for theophylline using sol–gel immobilized molecularly imprinted polymer particles. Microchim Acta 182(5–6):933–942

    Article  CAS  Google Scholar 

  22. Lin X, Ni Y, Kokot S (2013) A novel electrochemical sensor for the analysis of β-agonists: the poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode. J Hazard Mater 260(6):508–517

    Article  CAS  Google Scholar 

  23. Wu F, Huang T, Hu YJ, Yang X, Ouyang YJ, Xie QJ (2016) Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups. Microchim Acta 183(9):2539–2546

    Article  CAS  Google Scholar 

  24. Peng D, Liang RP, Huang H, Qiu JD (2016) Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe3O4/Au NPs. J Electroanal Chem 761:112–117

    Article  CAS  Google Scholar 

  25. Han SY, Du TY, Lai LM, Jiang XR, Cheng CS, Jiang H, Wang XM (2016) Highly sensitive biosensor based on the synergistic effect of Fe3O4-Co3O4 bimetallic oxides and graphene. RSC Adv 6(85):82033–82039

    Article  CAS  Google Scholar 

  26. Li QY, Wang PY, Zhou YL, Nie ZR, Wei Q (2016) A magnetic mesoporous SiO2/Fe3O4 hollow microsphere with a novel network-like composite shell: synthesis and application on laccase immobilization. J Sol-Gel Sci Techn 78(3):523–530

    Article  CAS  Google Scholar 

  27. Wu D, Li YY, Zhang Y, Wang PP, Wei Q, Du B (2014) Sensitive electrochemical sensor for simultaneous determination of dopamine, ascorbic acid, and uric acid enhanced by amino-group functionalized mesoporous Fe3O4@graphene sheets. Electrochim Acta 116:244–249

    Article  CAS  Google Scholar 

  28. Guo J, Zhu H, Sun Y, Zhang X (2015) Construction of sandwiched graphene paper@Fe3O4 nanorod array@graphene for large and fast lithium storage with an extended lifespan. J Mater Chem A 3(38):19384–19392

    Article  CAS  Google Scholar 

  29. Teymourian H, Salimi A, Khezrian S (2013) Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens Bioelectron 49:1–8

    Article  CAS  Google Scholar 

  30. Zuo Y, Wang G, Peng J, Li G, Ma Y, Yu F, Dai B, Guo X, Wong C (2016) Hybridization of graphene nanosheets and carbon-coated hollow Fe3O4 nanoparticles as a high-performance anode material for lithium-ion batteries. J Mater Chem A 4(7):2453–2460

    Article  CAS  Google Scholar 

  31. Mishra RK, Upadhyay SB, Kushwaha A, Kim TH, Murali G, Verma R (2015) SnO2 quantum dots decorated on RGO: a superior sensitive, selective and reproducible performance for a H2 and LPG sensor. Nanoscale 7(28):11971–11979

    Article  CAS  Google Scholar 

  32. Yaqoob U, Uddin ASMI, Chung GS (2016) Foldable hydrogen sensor using Pd nanocubes dispersed into multiwall carbon nanotubes-reduced graphene oxide network assembled on nylon filter membrane. Sensor Actuat B: Chem 229:355–361

    Article  CAS  Google Scholar 

  33. Erogul S, Bas SZ, Ozmen M, Yildiz S (2015) A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim Acta 186:302–313

    Article  CAS  Google Scholar 

  34. Lonkar SP, Deshmukh YS, Abdala AA (2015) Recent advances in chemical modifications of graphene. Nano Res 8(4):1039–1074

    Article  CAS  Google Scholar 

  35. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074

    Article  CAS  Google Scholar 

  36. Sun CL, Lee HH, Yang JM, Wu CC (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26(8):3450–3455

    Article  CAS  Google Scholar 

  37. Hu H, Song Y, Feng M, Zhan H (2016) Carbon nanomaterials for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid: from one-dimensional to the quasi one-dimensional. Electrochim Acta 190:40–48

    Article  CAS  Google Scholar 

  38. Habibi B, Pournaghi-Azar MH (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry. Electrochim Acta 55(19):5492–5498

    Article  CAS  Google Scholar 

  39. Manivel P, Dhakshnamoorthy M, Balamurugan A, Ponpandian N, Mangalaraj D, Viswanathan C (2013) Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Adv 3(34):14428–14437

    Article  CAS  Google Scholar 

  40. Lian Q, He Z, Qian H, Ai L, Yan K, Zhang D, Lu X, Zhou X (2014) Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal Chim Acta 823:32–39

    Article  CAS  Google Scholar 

  41. Mei LP, Feng JJ, Wu L, Chen JR, Shen LG, Xie YL, Wang AJ (2016) A glassy carbon electrode modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid. Microchim Acta 183(6):2039–2046

    Article  CAS  Google Scholar 

  42. Xing LW, Ma ZF (2016) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183(1):257–263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project financially supported by the Major Program for Science and Technology Development of Shihezi University (gxjs2014-zdgg04), National Natural Science Foundation of China (81260487, 81460543, 21575089), the Scientific Research Foundation for the Returned Overseas Chinese Scholars from Ministry of Human Resources and Social Security of China (RSLX201301), the Pairing Program of Shihezi University with Eminent Scholar in Elite University (SDJDZ201502), open Funding Project of the State Key Laboratory of Bioreactor Engineering and 2015 Key Technical Innovation Project of Xinjiang Uygur Autonomous Region.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wang or Yingchun Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Han Song and Guipeng Xue contributed equally to this study.

Electronic supplementary material

ESM 1

(DOC 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Xue, G., Zhang, J. et al. Simultaneous voltammetric determination of dopamine and uric acid using carbon-encapsulated hollow Fe3O4 nanoparticles anchored to an electrode modified with nanosheets of reduced graphene oxide. Microchim Acta 184, 843–853 (2017). https://doi.org/10.1007/s00604-016-2067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2067-1

Keywords

Navigation