Skip to main content
Log in

Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an inexpensive electrode for the sensitive amperometric determination of the pesticide methyl parathion. A glassy carbon electrode was modified with a nanocomposite consisting of molybdenum disulfide nanosheets (MoS2) and graphene that was prepared via a hydrothermal process. Its morphology, elemental composition, diffraction, impedance and voltammetric characteristics were studied. The modified electrode displays excellent electrocatalytic ability towards methyl parathion, and the reduction peak current, measured typically at −0.60 V (vs. Ag/AgCl) is related to the concentration of methyl parathion. The effect of concentration, scan rate and solution pH value were optimized. The calibration plot is linear in the 10 nM to 1.9 mM concentration range, with a 3.2 nM detection limit (at a signal-to-noise ratio of 3). The electrode is selective, stable, adequately repeatable and reproducible. The method was successfully applied to the determination of methyl parathion in spiked samples of homogenized apple, kiwi, tomato and cabbage.

A reliable and robust methyl parathion sensor has been developed using heterostructured MoS2/graphene. The linear range is 10 nM–1.9 nM and detection limit is 3.2 (±0.8) nM. The method was successful in real sample determination of spiked methyl parathion in food samples such as apple, kiwi, tomato and cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumaravel A, Chandrasekaran M (2010) A novel nanosilver/nafion composite electrode for electrochemical sensing of methyl parathion and parathion. J Electroanal Chem 638(2):231–235

    Article  CAS  Google Scholar 

  2. Duan N, Wu S, Dai S, Gu H, Hao L, Ye H, Wang Z (2016) Advances in aptasensors for the detection of food contaminants. Analyst

  3. Mulchandani A, Chen W, Mulchandani P, Wang J, Rogers KR (2001) Biosensors for direct determination of organophosphate pesticides. Biosens Bioelectron 16(4):225–230

    Article  CAS  Google Scholar 

  4. Parham H, Rahbar N (2010) Square wave voltammetric determination of methyl parathion using ZrO 2-nanoparticles modified carbon paste electrode. J Hazard Mater 177(1):1077–1084

    Article  CAS  Google Scholar 

  5. Wang J, Chen L, Mulchandani A, Mulchandani P, Chen W (1999) Remote biosensor for in-situ monitoring of organophosphate nerve agents. Electroanalysis 11(12):866–869

    Article  CAS  Google Scholar 

  6. Trojanowicz M (2002) Determination of pesticides using electrochemical enzymatic biosensors. Electroanalysis 14(19–20):1311–1328

    Article  CAS  Google Scholar 

  7. Gong J, Wang L, Zhang L (2009) Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite. Biosens Bioelectron 24(7):2285–2288

    Article  CAS  Google Scholar 

  8. Mulchandani P, Chen W, Mulchandani A, Wang J, Chen L (2001) Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens Bioelectron 16(7):433–437

    Article  CAS  Google Scholar 

  9. Lei Y, Mulchandani P, Wang J, Chen W, Mulchandani A (2005) Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Environ Sci Technol 39(22):8853–8857

    Article  CAS  Google Scholar 

  10. Bates J (1965) A general method for the determination of organophosphorus pesticide residues in foodstuffs. Analyst 90(1073):453–466

    Article  CAS  Google Scholar 

  11. Pan D, Ma S, Bo X, Guo L (2011) Electrochemical behavior of methyl parathion and its sensitive determination at a glassy carbon electrode modified with ordered mesoporous carbon. Microchim Acta 173(1–2):215–221

    Article  CAS  Google Scholar 

  12. Jeyapragasam T, Saraswathi R, Chen S-M, Lou B-S (2013) Detection of methyl parathion at an electrochemically reduced graphene oxide (ERGO) modified electrode. Int J Electrochem Sci 8:12353–12366

    CAS  Google Scholar 

  13. Wang Y, Jin J, Yuan C, Zhang F, Ma L, Qin D, Shan D, Lu X (2015) A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides. Analyst 140(2):560–566

    Article  CAS  Google Scholar 

  14. Kang T-F, Wang F, Lu L-P, Zhang Y, Liu T-S (2010) Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes. Sensors Actuators B Chem 145(1):104–109

    Article  CAS  Google Scholar 

  15. Zhao L, Zhao F, Zeng B (2013) Electrochemical determination of methyl parathion using a molecularly imprinted polymer–ionic liquid–graphene composite film coated electrode. Sensors Actuators B Chem 176:818–824

    Article  CAS  Google Scholar 

  16. Zeng Y, Yu D, Yu Y, Zhou T, Shi G (2012) Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes–poly (acrylamide) nanocomposite film modified electrode. J Hazard Mater 217:315–322

    Article  Google Scholar 

  17. Fu X-C, Zhang J, Tao Y-Y, Wu J, Xie C-G, Kong L-T (2015) Three-dimensional mono-6-thio-β-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion. Electrochim Acta 153:12–18

    Article  CAS  Google Scholar 

  18. Kumar NA, Dar MA, Gul R, Baek J-B (2015) Graphene and molybdenum disulfide hybrids: synthesis and applications. Mater Today 18(5):286–298

    Article  CAS  Google Scholar 

  19. Rowley-Neale SJ, Brownson DA, Smith GC, Sawtell DA, Kelly PJ, Banks CE (2015) 2D nanosheet molybdenum disulphide (MoS 2) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale 7(43):18152–18168

    Article  CAS  Google Scholar 

  20. Kalantar-Zadeh K, Ou JZ (2015) Biosensors based on two-dimensional MoS2. ACS Sensors 1(1):5–16

    Article  Google Scholar 

  21. Mani V, Devadas B, Chen S-M (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315

    Article  CAS  Google Scholar 

  22. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425

    Article  CAS  Google Scholar 

  23. Chang K, Chen W (2011) In situ synthesis of MoS 2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47(14):4252–4254

    Article  CAS  Google Scholar 

  24. Zhang W, Chuu C-P, Huang J-K, Chen C-H, Tsai M-L, Chang Y-H, Liang C-T, Chen Y-Z, Chueh Y-L, He J-H (2014) Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci Rep 4

  25. Zhao K, Gu W, Zhao L, Zhang C, Peng W, Xian Y (2015) MoS 2/nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 169:142–149

    Article  CAS  Google Scholar 

  26. Guo J, Wong JX, Cui C, Li X, Yu H-Z (2015) A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Analyst 140(16):5518–5525

    Article  CAS  Google Scholar 

  27. Xue X, Wei Q, Wu D, Li H, Zhang Y, Feng R, Du B (2014) Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets. Electrochim Acta 116:366–371

    Article  CAS  Google Scholar 

  28. Mani V, Devasenathipathy R, Chen S-M, Wu T-Y, Kohilarani K (2015) High-performance electrochemical amperometric sensors for the sensitive determination of phenyl urea herbicides diuron and fenuron. Ionics 21(9):2675–2683

    Article  CAS  Google Scholar 

  29. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309

    Article  CAS  Google Scholar 

  30. Su S, Sun H, Xu F, Yuwen L, Fan C, Wang L (2014) Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchim Acta 181(13–14):1497–1503

    Article  CAS  Google Scholar 

  31. Govindasamy M, Mani V, Chen S-M, Karthik R, Manibalan K, Umamaheswari R (2016) MoS2 flowers grown on graphene/carbon nanotubes: a versatile substrate for electrochemical determination of hydrogen peroxide. Int J Electrochem Sci 11:2954–2961

    Article  CAS  Google Scholar 

  32. Mani V, Govindasamy M, Chen S-M, Karthik R, Huang S-T (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim Acta 1–9

  33. Govindasamy M, Chen S-M, Mani V, Devasenathipathy R, Umamaheswari R, Santhanaraj KJ, Sathiyan A (2017) Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk. J Colloid Interface Sci 485:129–136

    Article  CAS  Google Scholar 

  34. Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6):4720–4728

    Article  CAS  Google Scholar 

  35. Deo RP, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M, Scholz F, Chen W, Lin Y (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530(2):185–189

    Article  CAS  Google Scholar 

  36. Kumar J, Jha SK, D’Souza S (2006) Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens Bioelectron 21(11):2100–2105

    Article  CAS  Google Scholar 

  37. Yue X, Han P, Zhu W, Wang J, Zhang L (2016) Facile and sensitive electrochemical detection of methyl parathion based on a sensing platform constructed by the direct growth of carbon nanotubes on carbon paper. RSC Adv 6(63):58771–58779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shen-Ming Chen or Veerappan Mani.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindasamy, M., Chen, SM., Mani, V. et al. Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Microchim Acta 184, 725–733 (2017). https://doi.org/10.1007/s00604-016-2062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2062-6

Keywords

Navigation